

Kakinada-533003, Andhra Pradesh, India

M.Tech in Biotechnology

Vision

To cultivate World class Biotechnecians with a perspective to innovate create and distribute knowledge for the advantage of the general public and environment.

Mission

- Initiate multi-disciplinary programs through acedemicia industry interface with special emphasis on applications of biotechnology so as to make the student employable.
- Importance on recent trends in biotechnology and its applications through organizing symposiums, seminars and conferences.
- To improve quality of teaching through faculty development programs.

PROGRAM EDUCATIONAL OBJECTIVES

PEO1	Use of Biotechnology in developing economically important Bio products.
PEO2	To do Research in the areas of Microbiology, Bioprocessing and Immunology.
PEO3	Use of Bioinformatics and Computational biology in Drug designing.

PEO4 Pursue research and develop capabilities to handle multi-disciplinary Research

PEO5 Work in teams and demonstrate leadership skills with professional ethics.

PROGRAM OUTCOMES:

At the end of the program the student will be able to:

- **PO1** Engage in critical thinking and pursue research/ investigations and development to solve practical problems.
- **PO2** Communicate effectively on complex engineering activities with the engineering community and with society at large, write and present substantial technical reports.
- **PO3** Demonstrate higher level of professional skills to tackle multidisciplinary and complex research related to "Biotechnology".
- **PO4** Do research on ongoing health issues, Agricultural Problems and Bio-product Production.
- **PO5** Application of advanced research Platforms in Biology and Life Sciences.
- **P06** Develop Entrepreneurs, Researchers, Managers in the Field of Biotechnology.

COURSE OUTCOMES

Course Code	
M0301	Advanced Bioprocessing Engineering

- CO1 An introduction for the history of application of the course
- CO2 Deals with different media formulations
- CO3 Concept of different online and offline monitoring systems
- CO4 Introduces about study of different fluid characteristics of different fluids
- CO5 Explains about stability aspects and Different bioreactors

Kakinada-533003, Andhra Pradesh, India

M.Tech in Biotechnology

Course Code	T
M0302	Immunotechnology

After completion of course, students would be able to:

- CO1 Deals with fundamental concepts of Immunology
- CO2 Deals with Antigens, Receptors and about Major Histocompatibility Complexes
- CO3 Different applications of immunological techniques and Cytokines.
- CO4 current Vaccine technology
- autoimmunity, treatment, immunotherapy and immunodefficiencies

Course Code	
M0303	PROTEIN ENGINEERING (Elective-I)

After completion of course, students would be able to:

- CO1 PROTEIN STRUCTURAL FAMILIES, Ramachandran Plot and conformational accessibilities
- CO2 Protein folding pathways in prokaryotes and eukaryotes, Inclusion bodies and chaperones
- CO3 Strategies for protein engineering, Role of low-fidelity enzymes in protein engineering,
- CO4 PREDICTION AND DESIGN OF PROTEIN STRUCTURES
- CO5 Different databases for protein structure and their uses.

Course Code	ADVANCES IN FERMENTATION TECHNOLOGY & DOWNSTREAM PROCESSING
M0304	(Elective-I)

After completion of course, students would be able to:

- CO1 INTRODUCTION TO FERMENTATION TECHNOLOGY
- CO2 Strain improvement and Media formulation.
- CO3 Environmental regulations and technology, laws and regulations
- CO4 DESIGN AND CONTROL OF FERMENTER
- CO5 Different downstream processing techniques

Course Code	TISSUE ENGINEERING (Elective-I)
M0305	115502 211411122111114 (21000110 1)

After completion of course, students would be able to:

- CO1 Introduction to tissue engineering and its challenges, Tissue organization and Angiogenesis.
- CO2 CELL DIVISION AND SIGNAL PROCESSING.
- CO3 Cell-extracellular matrix interactions, Direct Cell-Cell contact.
- CO4 Measurement of cell characteristics.
- CO5 Biomaterials and bioreactors in tissue engineering.

Course Code	MEDICAL PROPERTIES OF (Flacking II)
M0306	MEDICAL BIOTECHNOLOGY (Elective-II)

- CO1 CLASSIFICATION OF GENETIC DISEASES like Chromosomal disorders and Gene controlled diseases.
- CO2 Pathogenesis of diseases, Diagnosis and Antimicrobial resistance.
- CO3 Epidemiology and disease monitoring, Clinical trials and computer aided statistics.
- CO4 OVERVIEW OF GENE THERAPY,
- CO5 Dealt with different applications like vaccines, bio pharming and Drug targeting.

Course Code	MODELLING, SIMULATION AND OPTIMIZATION OF BIOPROCESS
-------------	--

Kakinada-533003, Andhra Pradesh, India

M.Tech in Biotechnology

M0307 (Elective-II)	M0307	(Elective-II)

After completion of course, students would be able to:

- Modeling principles and design and optimization of bioreactors.
- CO2 Formulation of balance equations, stoichiometry, elemental balancing and the yield coefficient.
- CO3 Information for bioreactor modelling, biological kinetics, and kinetics of anaerobic degradation.
- CO4 Bioreactor modeling, liquid-liquid extraction and determination of kla.
- CO5 Processes using berkeley Madonna, lineweaver-burk plot and fluidized bed recycle reactor.

Course Code	BIOLOGICAL TREATMENT OF WASTE WATER
M0308	(Elective-II)

After completion of course, students would be able to:

- CO1 Characteristics of Activated Sludge, Analysis of Data and selection.
- CO2 Biofilm process considerations, aerobic fixed film & anaerobic treatment processes.
- CO3 Technologies used in advanced treatment.
- CO4 Nitrification & Denitrification Processes.
- CO5 Environmental regulations and technology and Recycling of Industrial wastes.

Course Code	DECEARCH METHODOLOGY AND IDD
M0308	RESEARCH METHODOLOGY AND IPR

After completion of course, students would be able to:

- CO1 Research Problem and scope.
- CO2 Format used in Research.
- CO3 Nature of IPR.
- CO4 Scope of patent rights and patent filing.
- CO5 New developments in IPR..

Course Code	ADVANCED BIOPROCESS ENGINEERING & DOWNSTREAM PROCESSING
M0309	LABORATORY

After completion of course, students would be able to:

- CO1 Estimation of Proteins by Different Biochemistry Methods.
- CO2 Sonication and Chromatographic techniques.
- CO3 Media formulation, Optimization and Sterilization.
- CO4 Determination of polarity / partition coefficient of bio molecule by aqueous two phase method.
- CO5 Lyophilisation and SDS PAGE

Course Code	IMMUNIOTERCHNOLOGY LABORATIONY
M0310	IMMUNOTECHNOLOGY LABORATORY

- CO1 Blood grouping
- CO2 Antibody titre by ELISA method.
- CO3 HPLC
- CO4 Double diffusion, Immuno-electrophoresis and Radial Immuno diffusion.
- CO5 Blood smear identification of leucocytes by Giemsa stain

Kakinada-533003, Andhra Pradesh, India

M.Tech in Biotechnology

Course Code	MOLECULAR RIOLOGY & CENERIC ENCINEERING
N0301	MOLECULAR BIOLOGY & GENETIC ENGINEERING

After completion of course, students would be able to:

- CO1 Basic concepts and cloning vectors in genetic engineering
- CO2 Ligation techniques, Gene transfer techniques, Eukaryotic Screening.
- CO3 Manipulation of gene expression and hybridization techniques.
- CO4 Types of PCR, Mutation detection.
- CO5 DNA sequencing, DNA finger printing and gene therapy.

Course Code	CUCTEMC DIOLOGY
N0302	SYSTEMS BIOLOGY

After completion of course, students would be able to:

- CO1 Fundamentals Overview of Gene Control.
- CO2 Equilibrium Binding and Co-operativity, Michaelis Menten Kinetics.
- CO3 Building an Organism Starting From a Single, Drosophila Development.
- CO4 Establishment of Developmental Precision.
- CO5 Gene regulation at a single cell level.

Course Code	ADVANCES IN DIGINEODMATICS
N0303	ADVANCES IN BIOINFORMATICS (Elective-III)
110303	(Elective-III)

After completion of course, students would be able to:

- CO1 Introduction to Genomic data and Data Organization, Biological databases.
- CO2 Protein structure predictions, folding and Protein ligand interactions.
- CO3 Introduction to proteomics and protein engineering, 2-D PAGE and Mass spectrometry.
- CO4 Functional Genomics & analysis of gene expression, Pharmacogentics and molecular Diagnosis.
- CO5 Concepts of phylogeny.

Course Code	A DIVANCEMENTE IN DIODE A CTIOD DECLON (EL . ' III)
N0304	ADVANCEMENTS IN BIOREACTOR DESIGN (Elective-III)

After completion of course, students would be able to:

- CO1 Introduction about Bioreactors, Methods of Aeration, product and substrate inhibition on chemostat.
- CO2 Different types of bioreactors and their design features.
- CO3 Gas liquid Mass transfers in cellular systems.
- CO4 Mass transfers, Fluid dynamics and Sterilization.
- CO5 Aeration and agitation in animal cell reactors.

Course Code	
N0305	AGRICULTURE BIOTECHNOLOGY (Elective-III)

- CO1 Introduction about role of bio fertilizers and bio-pesticides.
- CO2 Molecular aspects of systemic and abiotic stress responses.
- CO3 Concepts about Insect resistance and Viral resistance.
- CO4 Concepts about Fungal resistance and genetic improvement.
- CO5 Social, ethical and legal aspects of Biotechnology.

Kakinada-533003, Andhra Pradesh, India

M.Tech in Biotechnology

Course Code	MEMBRANE BIOLOGY AND SIGNAL TRANSDUCTION
N0306	(Elective-IV)

After completion of course, students would be able to:

- CO1 Introduction about Membrane structure
- CO2 Concepts of Transport Proteins in Membranes.
- CO3 Cell cycle regulation.
- CO4 Signal Transduction in cells.
- CO5 Infromation of different signaling pathways.

Course Code	BIOFUELS AND BIOENERGY
N0307	(Elective-IV)

After completion of course, students would be able to:

- CO1 Introduction about Bioethanol.
- CO2 Cellulases and its role in ethanol production.
- CO3 Bioethanol production from Ligno cellulose feed stocks.
- CO4 Biochemical engineering and Bioprocesses management for fuel production.
- CO5 Genetic manipulation of plants for Bioethanol production.

Course Code	ADVANCED BIOSTATISTICS
N0308	(Elective-IV)

After completion of course, students would be able to:

- CO1 Introduction about Biostatistics.
- CO2 Programming aspects of R.
- CO3 Concept of Probability.
- CO4 Different Distributions
- CO5 Analysis.

Course Code	MOLECULAR BIOLOGY & GENETIC ENGINEERING
N0309	LABORATORY

After completion of course, students would be able to:

- CO1 Isolation of Plasmid DNA from Plants and Bacteria.
- CO2 Primer Designing
- CO3 Cloning of amplified gene to pUC 18 or pUC 19 plasmid
- CO4 Transformation of recombinant clone to bacteria.
- Recombinant screening of clone (blue white screening or colony PCR) and Screening.

Course Code	DIOINDODMATICCI ADI ADODATIONI
N0310	BIOINFORMATICS LABLABORATORY

- CO1 Protein homology modeling by Swiss Model
- Genome annotation and Construction of phylogenetic tree using MEGA.
- CO3 Protein Structure classification and Validation.
- CO4 Molecular Docking and Dynamics.
- CO5 Database similarity search by WU BLAST, PSI BLAST

Kakinada-533003, Andhra Pradesh, India

M.Tech in Biotechnology

Course Code	DIODDOCECC COMBDOL AND INCEDUMENTATION
P0302	BIOPROCESS CONTROL AND INSTRUMENTATION

COURSE OUTCOMES

After completion of course, students would be able to:

- CO1 Representative process control problems.
- CO2 Rationale for process modeling, Thermodynamics and reaction kinetics.
- CO3 Dynamic behavior of chemical Processes.
- CO4 Introduction to feedback control.
- CO5 Types of controller, Design of feedback controller.

Course Code	MOLECULAR MODELLING & DRUG DESIGN
P0303	

COURSE OUTCOMES

After completion of course, students would be able to:

- CO1 Concepts in Quantum mechanics and Molecular Modeling.
- CO2 Molecular Mechanics and Energy Minimization.
- CO3 Molecular Dynamics and Molecular Docking.
- CO4 Homology Modeling and Pharmacophre Modeling.
- CO5 Stages of drug discovery, identification, validation and diversity of drug targets.

Course Code	BIONANOTECHNOLOGY
P0304	

COURSE OUTCOMES

- CO1 Introduction to Nano Biotechnology.
- CO2 Chemical approaches to nano structured materials.
- CO3 Introduction to Nano Fabrication.
- CO4 Introduction about Nano engineering Aspects.
- CO5 Concepts about Instrumentation and characterization in Nano Biotechnology