

R20 COURSE STRUCTURE

S.No	Course No	Course Name	P.Os	Category	L	Т	Р	Credits
1		Mathematics – I (Calculus)		BSC	3	0	0	3
2		Mathematics – II (Linear Algebra and Numerical Methods)		BSC	3	0	0	3
3		Communicative English		HSMC	3	0	0	3
4		Programming for Problem Solving Using C		ESC	3	0	0	3
5		Thermal and Hydro Prime Movers		ESC	3	0	0	3
6		English Communications Skills Lab		HSMC	0	0	3	1.5
7		Electrical Engineering Workshop Lab		BSC	0	0	3	1.5
8		Programming for Problem Solving Using C Lab		ESC	0	0	3	1.5
9		Physical Fitness Activities		MC	0	0	2	0
				Total	15	0	11	19.5

I B.Tech I Semester

S.No	Course No	Course Name	P.Os	Category	L	Т	Р	Credits
		Mathematics – III		BSC	3	0	0	3
1		(Transforms, PDE and Vector Calculus)		DSC	5	0	0	5
2		Applied Physics		BSC	3	0	0	3
3		Data Structures Through C		ESC	3	0	0	3
4		Electrical Circuit Analysis –I		ESC	3	0	0	3
5		Engineering Drawing		ESC	3	0	0	3
6		Thermal and Hydro Prime Movers Lab		ESC	0	0	3	1.5
7		Applied Physics Laboratory		BSC	0	0	3	1.5
8		Data Structures through C Lab		ESC	0	0	3	1.5
9		Applied Physics Virtual Laboratory		BSC	0	0	2	0
10		Constitution of India		MC	2	0	0	0
11		Engineering Exploration Project- Design Thinking		MC	0	0	1	0
				Total	17	0	12	19.5

I B.Tech II Semester

R20 COURSE STRUCTURE

S.No	Course No	Course Name	P.Os	Category	L	Т	Р	Credits
1		Mathematics – IV (Complex Variable and Statistical Methods)		BSC	3	0	0	3
2		Electronic Devices and Circuits		PCC	3	0	0	3
3		Electrical Circuit Analysis –II		PCC	3	0	0	3
4		DC Machines and Transformers		PCC	3	0	0	3
5		Electro Magnetic Fields		PCC	3	0	0	3
6		DC Machines and Transformers Lab		PCC	0	0	3	1.5
7		Electrical Circuits Lab		PCC	0	0	3	1.5
8		Electronic Devices and Circuits lab		PCC	0	0	3	1.5
9		Skill oriented course- Design of Electrical Circuits using Engineering Software Tools		SC	0	0	4	2
10		Essence of Indian Tradition Knowledge		MC	2	0	0	0
				Total	17	0	13	21.5

II B.Tech I Semester

II B.Tech II Semester

S.No	Course No	Course Name	P.Os	Category	L	Т	Р	Credits
1		Python Programming		ESC	3	0	0	3
2		Digital Electronics		PCC	3	0	0	3
3		Power System-I		PCC	3	0	0	3
4		Induction and Synchronous Machines		PCC	3	0	0	3
5		Managerial Economics & Financial Analysis		HSMC	3	0	0	3
6		Python Programming Lab		ESC	0	0	3	1.5
7		Induction and Synchronous Machines Lab		PCC	0	0	3	1.5
8		Digital Electronics Lab		PCC	0	0	3	1.5
9		Soft skill course- Employability Skills		SC	2	0	0	2
				Total	15	0	13	21.5
		Minors Course*			4	0	0	4
		Honors Course*			4	0	0	4

R20 COURSE STRUCTURE III B.Tech I Semester

S.No	Course No	Course Name	P.Os	Category	L	Т	Р	Credits
1		Power Systems-II		PCC	3	0	0	3
2		Power Electronics		PCC	3	0	0	3
3		Control Systems		PCC	3	0	0	3
4		Open Elective- I/ Job Oriented Elective-I		OEC	3	0	0	3
5		Professional Elective - I		PEC	3	0	0	3
6		Control Systems Lab		PCC	0	0	3	1.5
7		Power Electronics Lab		PCC	0	0	3	1.5
8		Skill advanced course- Courses offered by Siemens Centre of excellence : AUTOMATION LAB- Basics of PLC, Basics of SCADA ELECTRICAL & ENERGY STUDIES LAB- Basics of Induction Motor PROCESS INSTRUMENTATION LAB- Basics of Process Instrumentation		SC	0	0	4	2
9		Environmental Science		MC	2	0	0	0
10		Summer Internship 2 Months (Mandatory) after second year (to be evaluated during V semester		PROJ	0	0	0	1.5
				Total	17	0	10	21.5
		Minors Course *			4	0	0	4
		Honors Course*			4	0	0	4

III B.Tech II Semester

S.No	Course No	Course Name	P.Os	Category	L	Т	Р	Credits
1		Microprocessors and Microcontrollers		PCC	3	0	0	3
2		Electrical Measurements and Instrumentation		PCC	3	0	0	3
3		Power System Analysis		PCC	3	0	0	3
4		Professional Elective - II		PEC	3	0	0	3
5		Open Elective –II/ Job Oriented Elective-II		OEC	3	0	0	3
6		Electrical Measurements and Instrumentation Lab		PCC	0	0	3	1.5
7		Microprocessors and Microcontrollers Lab		PCC	0	0	3	1.5
8		Power Systems and Simulation Lab		PCC	0	0	3	1.5
9		Skill advanced course- High Voltage Lab Courses offered by Siemens Centre of excellence : ELECTRICAL & ENERGY STUDIES LAB- Low Voltage Switchgear, AC & DC Drives		SC	0	0	4	2
10		Research Methodology		MC	2	0	0	0
				Total	17	0	13	21.5
		Minors Course*			4	0	0	4
		Honors Course*			4	0	0	4

R20 COURSE STRUCTURE IV B.Tech I Semester

S.No	Course No	Course Name	P.Os	Category	L	Т	Р	Credits
1		Professional Elective – III		PEC	3	0	0	3
2		Professional Elective – IV		PEC	3	0	0	3
3		Professional Elective – V		PEC	3	0	0	3
4		Open Elective- III /Job Oriented Elective-III		OEC	3	0	0	3
5		Open Elective-IV /Job Oriented Elective-IV		OEC	3	0	0	3
6		Universal Human Values-2: Understanding Harmony		HSMC	3	0	0	3
7		Skill advanced course- IoT Applications in Electrical Engineering		SC	0	0	4	2
8		Industrial / Research Internship 2 Months (Mandatory) after third year (to be evaluated during VII Semester)		PROJ	0	0	3	3
				Total	18	0	7	23
		Minors Course*			4	0	0	4
		Honors Course*			4	0	0	4

IV B.Tech II Semester

S.No	Course No	Course Name	P.Os	Category	L	Т	Р	Credits
1	Major Project	Project work, seminar and internship in industry (6 Months)		PROJ				12
				Total				12

- **HSMC** : Humanities and Social Science
- Including Management Courses
- **BSC** : Basic Science Courses
- **ESC** : Engineering Science Courses
- PCC : Professional Core Courses

- **PROJ** : Internship, Seminar, Project Wok
- MC : Mandatory Courses
- SC : Skill Oriented Courses

- **PEC** : Professional Elective Courses
- **OEC** : Open Elective Courses

*For Honor's/ Minor Course Fullfillments:

- The 20 additional Credits need to be acquired, 16/15 credits can be earned by undergoing specified courses listed as pools, with 4/5 courses, each carrying 4/3 credits. The remaining 4/5 credits must be acquired through two online MOOCs (Swayam)., which shall be domain specific, with 2/3 credits and with a minimum duration of 8/12weeks as recommended by the Board of Studies.
- Minor Engineering subjects are offered to other branches by EEE Department (except for EEE Students).
- Honors Engineering subjects are offered to EEE Students.
- Chairman in consultation with the local BoS members will float the list of allowed MOOC electives, each academic year, based on the list floated by (MOOCs (Swayam).

Professional Elective Subjects offered to EEE Branch Students:

Professional Elective – I:

1.	Switchgear and Protection
2.	Utilization of Electrical Energy
3.	High Voltage Engineering
4.	Renewable and Distributed Energy Technologies

Professional Elective – II:

1.	AI Applications in Electrical Engineering
2.	Flexible Alternating Current Transmission Systems
3.	Electrical Distribution Systems
4.	Electric Drives

Professional Elective –III:

1.	Digital Signal Processing
2.	Linear IC Applications
3.	Programmable Logic Controllers and Applications
4.	Optimization Techniques

Professional Elective – IV:

1.	Object Oriented Programming through Java
2.	Data Base Management Systems
3.	Cloud Computing
4.	Operating Systems

Professional <u>Elective – V:</u>

1.	Power System Operation and Control
2.	Switch Mode Power Conversion
3.	Advanced Control Systems
4.	IoT Applications in Electrical Engineering

Open Electives offered by EEE Department for Other Branches (Except EEE Branch)

Open Elective-I:

1.	Renewable Energy Sources
2.	Energy Auditing. Conservation and Management
3.	Optimization Techniques
4.	Basics of Control Systems

Open Elective-II:

1.	Neural Networks and Fuzzy Logic
2.	Basics of Power Systems and Power Quality
3.	Basics of Electrical Measurements
4.	Indian Electricity Act-2003

Open Elective-III:

1.	Basics of Microprocessors and Microcontrollers
2.	Fundamentals of utilization of Electrical Energy
3.	Electrical Estimation and Costing
4.	Introduction to Internet of Things

Open Elective-IV:

1.	Concepts of Power System Engineering
2.	Fundamentals of Electric Vehicles
3.	Introduction to Machine Learning
4.	Introduction to Smart Grid

***Honors Engineering Courses offered EEE Branch students**

II B.Tech II Semester:

- 1. Communication Systems
- 2. Special Electrical Machines
- 3. Signal and Systems

III B.Tech I Semester:

- 1. HVDC Transmission
- 2. Power Quality
- 3. Electrical Machine Design

III B.Tech II Semester:

- 1. Digital Control Systems
- 2. Analysis of Power Electronic Converters
- 3. VLSI Design

IV B.Tech I Semester:

- 1. Hybrid Electric Vehicles
- 2. Smart Grid Technologies
- 3. Power System Deregulation

<u>*Minor Engineering Courses offered by EEE Department for Other Branches</u> (Except EEE Branch)

II B.Tech II Semester:

- 1. Basics of Control Systems
- 2. Basics of Electrical Measurements
- 3. Renewable Energy Sources

III B.Tech I Semester:

- 1. Basics of Microprocessors and Microcontrollers
 - 2. Concepts of Power System Engineering
 - 3. Electrical Estimation and Costing

III B.Tech II Semester:

- 1. Energy Auditing, Conservation and Management
- 2. Fundamentals of utilization of Electrical Energy
- 3. Fundamentals of Power Electronics

IV B.Tech I Semester:

 1.
 Basics of Power Systems and Power Quality

 2.
 Fundamentals of Electric Vehicles

 3.
 Basics of Electric Drives and Its Applications

I B.Tech I Semester

COURSEMATHEMATICS-ICODE –(Calculus)R2011XXYY(Calculus)	CATEGORY	L-T-P	CREDITS
	BSC	3-0-0	3

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	utilize mean value theorems to real life problems	L3
CO2	solve the differential equations related to various engineering fields	L3
CO3	familiarize with functions of several variables which is useful in optimization	L3
CO4	apply double integration techniques in evaluating areas bounded by region. Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems	L3
CO5	conclude the use of special function in multiple integrals	L4

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2										1			
CO2	3	3										2	3		
CO3	2	3										2	2		
CO4	3	3										2	2		
CO5	2	2										1	1		

UNIT	CONTENTS	Contact Hours
UNIT - 1	Sequences, Series and Mean Value Theorems	(10 hrs)
	Comparison tests – Integral test – Cauchy's root test – Alternate series –	
	Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's	
	Maclaurin's theorems with remainders, Problems and applications on the	
	above theorem.	
UNIT - 2	Differential Equations of First order and First Degree	(10 hrs)

	Linear differential equations – Bernoulli's equations – Exact equations	
	and equations reducible to exact form - Homogeneous and Non-	
	homogeneous differential equations of higher order with constant	
	coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax,	
	polynomials in x^n , $e^{ax} V(x)$ and $x^n V(x)$ – Method of Variation of	
	parameters – Euler-Cauchy equation and Legender's equation.	
	Applications: Orthogonal trajectories – Electrical circuits (RL, RC, RLC)	
	– Simple Harmonic motion.	
UNIT - 3	Partial Differentiation	(10 hrs)
	Introduction – Homogeneous function – Euler's theorem – Total	
	derivative – Chain rule – Jacobian – Functional dependence – Taylor's	
	and MacLaurin's series expansion of functions of two variables.	
	Applications: Maxima and Minima of functions of two variables without	
	constraints and Lagrange's method (with constraints).	
UNIT - 4	Multiple Integrals	(8 hrs)
	Double integrals – Change of order of integration – Double integrals in	
	polar coordinates – Change of variables to polar coordinates – Areas	
	enclosed by plane curves – Triple integrals – Volume of solids – Change	
	of variables to spherical and cylindrical co-ordinates.	
UNIT - 5	Beta and Gamma Functions	(5 hrs)
	Introduction to Improper Integrals –Beta and Gamma functions –	` /
	Properties – Relation between Beta and Gamma functions – Evaluation of	
	improper integrals.	
	Total	
l		

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. **B. V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

I B.Tech I Semester

R2011XXYY	CODE – R2011XXVV	(Linear Algebra and Numerical Methods)	BSC	3-0-0	3
-----------	---------------------	--	-----	-------	---

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	develop the use of matrix algebra techniques that is needed by engineers	L6
	for practical applications	
CO2	solve system of linear algebraic equations using Gauss elimination, Gauss	L3
	Jordan, Gauss Seidel	
CO3	evaluate the approximate roots of polynomial and transcendental	L5
	equations by different algorithms	
CO4	apply Newton's forward & backward interpolation and Lagrange's	L3
	formulae for equal and unequal intervals	
CO5	apply numerical integral techniques to different Engineering problems	L3
	apply different algorithms for approximating the solutions of ordinary	
	differential equations with initial conditions to its analytical computations	
CO6	develop the use of matrix algebra techniques that is needed by engineers	L6
	for practical applications	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3										2	3		
CO2	2	2										2	3		
CO3	3	3										2	2		
CO4	3	2										2	1		
CO5	3	3										3	3		

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Solving Systems Of Linear Equations, Eigen Values And Eigen Vectors	(10 hrs)
	Rank of a matrix by echelon form and normal form - Solving system of	
	homogeneous and non-homogeneous linear equations – Gauss Elimination	
	method - Eigen values and Eigen vectors and properties (article-2.14 in	
	text book-1). Applications: Fee vibration of two mass system.	
UNIT - 2	Cayley–Hamilton Theorem And Quadratic Forms	(10 hrs)
	Cayley-Hamilton theorem (without proof) - Applications - Finding the	
	inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to	

	Diagonal form - Quadratic forms and nature of the quadratic forms -	
	Reduction of quadratic form to canonical forms by orthogonal	
	transformation.	
	Singular values of a matrix, singular value decomposition (text book-3).	
UNIT - 3	Iterative Methods	(08 hrs)
	Introduction – Solutions of algebraic and transcendental equations:	
	Bisection method - Secant method - Method of false position - Iteration	
	method - Newton-Raphson method (One variable and simultaneous	
	Equations) Solutions of system of equations - Jacobi and Gauss -Seidel	
	methods Evaluation of largest eigen value - eigen vector using Power	
	Method .	
UNIT - 4	Interpolation	(10 hrs)
	Introduction - Errors in polynomial interpolation - Finite differences -	
	Forward differences - Backward differences - Central differences -	
	Relations between operators - Newton's forward and backward formulae	
	for interpolation - Interpolation with unequal intervals - Lagrange's	
	interpolation formula – Newton's divide difference formula.	
UNIT - 5	Numerical Differentiation And Integration, Solution Of Ordinary	(10 hrs)
	Differential Equations With Initial Conditions	
	Numerical differentiation using interpolating polynomial – Trapezoidal rule	
	- Simpson's $1/3^{rd}$ and $3/8^{th}$ rule - Solution of initial value problems by	
	Taylor's series - Picard's method of successive approximations - Euler's	
	method - Runge-Kutta method (second and fourth order) - Milne's	
	Predictor and Corrector Method.	
	Total	

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- **2. B. V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- **3.** David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- **1. Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- 2. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

I B.Tech I Sem	ester		
COURSE	COMMUNICATIVE ENGLISH	CATEGORY	L-7
CODE		HEMC	20

COURSE CODE – R2011XXYY	COMMUNICATIVE ENGLISH	CATEGORY HSMC	L-T-P 3-0-0	CREDITS 3

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	understand social or transactional dialogues spoken by native speakers of	K2
	English and identify the context, topic, and pieces of specific information	
CO2	ask and answer general questions on familiar topics and introduce	K3
	oneself/others	
CO3	employ suitable strategies for skimming and scanning to get the general	K3
	idea of a text and locate specific information	
CO4	recognize paragraph structure and be able to match	K4
	beginnings/endings/headings with paragraphs	
CO5	form sentences using proper grammatical structures and correct word	K6
	forms	
CO6	To promote learner autonomy in learning English language	K5

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1									1	3		2			
CO2									1	3					
CO3										3		2			
CO4										3		1			
CO5										3		1			

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi	
	Publications	
	Lesson-2: Deliverance by Premchand from "The Individual Society",	
	Pearson Publications. (Non-detailed)	
	Listening: Listening to short audio texts and identifying the topic.	
	Listening to prose, prose and conversation.	
	Speaking: Asking and answering general questions on familiar topics such	
	as home, family, work, studies and interests. Self-introductions and	
	introducing others.	

	Reading: Skimming text to get the main idea. Scanning to look for specific								
	pieces of information.								
	Reading for Writing: Paragraph writing (specific topics) using suitable								
	cohesive devices; linkers, sign posts and transition signals; mechanics of								
	writing - punctuation, capital letters.								
	Vocabulary: Technical vocabulary from across technical branches (20)								
	GRE Vocabulary (20) (Antonyms and Synonyms, Word applications)								
	Verbal reasoning and sequencing of words.								
	Grammar: Content words and function words; word forms: verbs, nouns,								
	adjectives and adverbs; nouns: countables and uncountables; singular and								
	plural basic sentence structures; simple question form - wh-questions; word								
	order in sentences.								
	Pronunciation: Vowels, Consonants, Plural markers and their realizations								
UNIT - 2	Lesson-1: Nehru's letter to his daughter Indira on her birthday from								
	"Infotech English", Maruthi Publications								
	Lesson-2: Bosom Friend by Hira Bansode from "The Individual								
	Society", Pearson Publications. (Non-detailed)								
	Listening: Answering a series of questions about main idea and supporting								
	ideas after listening to audio texts, both in speaking and writing.								
	Speaking: Discussion in pairs/ small groups on specific topics followed by								
	short structured talks. Functional English: Greetings and leave takings.								
	Reading : Identifying sequence of ideas; recognizing verbal techniques that								
	help to link the ideas in a paragraph together.								
	Reading for Writing : Summarizing - identifying main idea/s and								
	rephrasing what is read; avoiding redundancies and repetitions.								
	Vocabulary: Technical vocabulary from across technical branches (20								
	words). GRE Vocabulary Analogies (20 words) (Antonyms and								
	Synonyms, Word applications)								
	Grammar: Use of articles and zero article; prepositions.								
	Pronunciation : Past tense markers, word stress-di-syllabic words								
UNIT - 3	Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech								
	English", Maruthi Publications								
	Lesson-2: Shakespeare's Sister by Virginia Woolf from "The								
	Individual Society", Pearson Publications. (Non-detailed)								
	Listening: Listening for global comprehension and summarizing what is								
	listened to, both in speaking and writing.								
	Speaking: Discussing specific topics in pairs or small groups and reporting								
	what is discussed. Functional English: Complaining and Apologizing.								
	Keading: Reading a text in detail by making basic inferences - recognizing								
	and interpreting specific context clues; strategies to use text clues for								
	comprenension. Critical reading.								
	Keading for Writing : Summarizing - identifying main idea/s and								

	rephrasing what is read; avoiding redundancies and repetitions. Letter	
	writing-types, format and principles of letter writing. E-mail etiquette,	
	Writing CV's	
	Vocabulary : Technical vocabulary from across technical branches (20)	
	words) GRF Vocabulary (20 words) (Antonyms and Synonyms Word	
	applications) Association sequencing of words	
	Crammar: Verbs tansas: subject verb agreement: direct and indirect	
	space reporting verbs for academic purposes	
	Pronunciation word stress not will be words	
	Pronunciation : word stress-poly-synable words.	
UN11 - 4	Lesson-1: Liking a Tree, Unbowed: wangari Maatnai-biography from	
	"Infotech English", Maruthi Publications	
	Lesson-2: Telephone Conversation-Wole Soyinka from "The	
	Individual Society", Pearson Publications. (Non-detailed)	
	Listening: Making predictions while listening to conversations/	
	transactional dialogues without video (only audio); listening to audio-	
	visual texts.	
	Speaking: Role plays for practice of conversational English in academic	
	contexts (formal and informal) - asking for and giving	
	information/directions. Functional English: Permissions, Requesting,	
	Inviting.	
	Reading: Studying the use of graphic elements in texts to convey	
	information, reveal trends/patterns/relationships, communicative process or	
	display complicated data.	
	Reading for Writing : Information transfer; describe, compare, contrast,	
	identify significance/trends based on information provided in	
	figures/charts/graphs/tables. Writing SOP, writing for media.	
	Vocabulary: Technical vocabulary from across technical branches (20	
	words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word	
	applications) Cloze Encounters.	
	Grammar: Quantifying expressions - adjectives and adverbs: comparing	
	and contrasting: degrees of comparison: use of antonyms	
	Pronunciation : Contrastive Stress	
UNIT - 5	Lesson-1: Stay Hungry-Stay foolish from "Infotech English" Maruthi	
	Publications	
	Lesson-2: Still I Rise by Maya Angelou from "The Individual Society".	
	Pearson Publications (Non-detailed)	
	Listening : Identifying key terms understanding concepts and interpreting	
	the concepts both in speaking and writing	
	Spaaking: Formal oral presentations on topics from academic contacts	
	without the use of PDT slides Eurotional English: Suggesting/Opinion	
	giving	
	givilig. Deading Deading for communication DAD Strategy Interview and the set	
	Keaung : Keaung for comprehension. KAP Strategy intensive reading and	

Extensive reading techniques.	
Reading for Writing: Writing academic proposals- writing research	
articles: format and style.	
Vocabulary: Technical vocabulary from across technical branches (20	
words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word	
applications) Coherence, matching emotions.	
Grammar : Editing short texts – identifying and correcting common errors	
in grammar and usage (articles, prepositions, tenses, subject verb	
agreement)	
Pronunciation: Stress in compound words	
Total	

Prescribed text books for theory for Semester-I:

- 1. "Infotech English", Maruthi Publications. (Detailed)
- 2. "The Individual Society", Pearson Publications. (Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (with Compact Disc)

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

I B.Tech I Semester

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	To convert flowcharts/algorithms to C Programs, compile and debug	K3
	programs	
CO2	To use different operators, data types and write programs that use two-	K3
	way/ multi-way selection and select the best loop construct for a given	
	problem.	
CO3	To implement operations on arrays, strings, structures and unions.	K4
CO4	To design and implement programs to analyze the different pointer	K4
	applications	
CO5	To decompose a problem into functions and to develop modular reusable	K5
	code and apply File I/O operations.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	2	3	-	-	-	1	1	1	1	2	1	1
CO2	1	2	3	2	3	-	-	-	1	1	1	1	2	1	1
CO3	1	2	3	1	3	-	-	-	1	1	1	1	2	1	1
CO4	1	2	3	1	3	-	-	-	1	1	1	1	2	1	1
CO5	1	2	3	2	3	-	-	-	1	1	1	1	2	1	1

UNIT	CONTENTS	Contact Hours
UNIT - 1	Introduction to Computers: Creating and running Programs, Computer	
	Numbering System, Storing Integers, Storing Real Numbers,	
	Introduction to the C Language: Background, C Programs, Identifiers,	
	Types, Variable, Constants, Input/output, Programming Examples, Scope,	
	Storage Classes and Type Qualifiers. Pre-Processor Statements, Header	
	Files	
	Structure of a C Program: Expressions Precedence and Associativity,	
	Side Effects, Evaluating Expressions, Type Conversion Statements, Simple	
	Programs, Command Line Arguments.	
UNIT - 2	Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators,	
	Shift Operators.	

	Selection & Making Decisions: Logical Data and Operators, Two Way	
	Selection, Multiway Selection, More Standard Functions	
	Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization	
	and Updating, Event and Counter Controlled Loops, Loops in C, Other	
	Statements Related to Looping, Looping Applications, and Programming	
	Examples.	
UNIT - 3	Arrays: Concepts, Using Array in C, Array Application, Two Dimensional	
	Arrays, Multidimensional Arrays, Programming Example - Calculate	
	Averages	
	Strings: String Concepts, C String, String Input / Output Functions, Arrays	
	of Strings, String Manipulation Functions String/ Data Conversion, A	
	Programming Example – Morse Code	
	Enumerated, Structure, and Union: The Type Definition (Type def),	
	Enumerated Types, Structure, Unions, and Programming Application	
UNIT - 4	Pointers: Introduction, Pointers to pointers, Compatibility, L value and R	
	value	
	Pointer Applications: Arrays, and Pointers, Pointer Arithmetic and	
	Arrays, Memory Allocation Function, Array of Pointers, Programming	
	Application	
	Processor Commands: Processor Commands	
UNIT - 5	Functions: Designing, Structured Programs, Function in C, User Defined	
	Functions, Inter-Function Communication, Standard Functions, Passing	
	Array to Functions, Passing Pointers to Functions, Recursion	
	Text Input / Output: Files, Streams, Standard Library Input / Output	
	Functions, Formatting Input / Output Functions, Character Input / Output	
	Functions	
	Binary Input / Output: Text versus Binary Streams, Standard Library,	
	Functions for Files, Converting File Type.	
	Total	

Text Books:

1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE

2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson **Reference Books**:

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill
- 2. Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson
- 3. Computer Fundamentals and Programming in C, Pradip Dey, Manas Ghosh, OXFORD

I B.Tech I Semester

COURSE CODE – R2011XXYY	THERMAL AND HYDRO PRIME MOVERS	CATEGORY ESC	L-T-P 1-0-4	CREDITS 3
D • •4				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Air stand cycles, constructional and operational details of IC engines.	
CO2	Properties of steam, Rankine Cycle, Principle and working of steam turbines.	
CO3	Fundamentals, governing cycle, working and efficiency of gas turbines.	
CO4	Working principle of pumps and hydraulic turbines.	
CO5	Detail and working of hydroelectric power plants and various loads.	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												\checkmark
CO2	\checkmark	\checkmark								\checkmark	\checkmark	\checkmark
CO3	\checkmark			\checkmark						\checkmark	\checkmark	\checkmark
CO4	\checkmark		\checkmark	\checkmark						\checkmark	\checkmark	\checkmark
CO5	\checkmark											\checkmark

UNIT	CONTENTS	Contact Hours
UNIT - 1	I.C Engines: Classification, working principles – valve and port timing	nouis
	diagrams – air standard cycles – Engine systems line fuel injection, carburation ignition cooling and lubrication	
UNIT - 2	Properties of Steam and use of Steam Tables- T-S and H-S Diagrams.	
	Analysis of various Thermodynamic and processes under gone by Steam.	
	Vapor Power Cycles: Carnot Cycle-Rankine Cycle- Thermodynamic	
	variables Effecting Efficiency and output of Rankine Cycle Analysis of	
	simple Rankine Cycle and Re-heat cycle.	
	Steam Turbines: Schematic layout of steam power plant – Classification	
	of steam Turbines – Impulse Turbine and Reaction Turbine	
UNIT - 3	Gas Turbines: Simple gas turbine plant-ideal cycle, closed cycle - open	
	cycle – Efficiency, Work ratio and optimum pressure ratio for simple gas	
	turbine cycle.	
UNIT - 4	Pumps: Types of pumps, Centrifugal pumps: Main components, Working	
	principle.	
	Hydraulic Turbines: Classifications of turbines; Working principle,	
	Efficiency calculation and Design principles for Pelton Wheel, Francis and	
	for Kaplan turbines; Governing of turbines.	
UNIT - 5	Hydro Power: Components of Hydroelectric power plant; pumped storage	
	systems, Estimation of water power potential ; Estimation of load on	
	turbines: load curve, load factor, capacity factor, utilization factor,	
	diversity factor, load - duration curve, firm power, secondary power,	
	prediction of load.	
	Total	

Text Books:

- 1. Thermal Engineering by Rajput, Lakshmi publications.
- 2. Thermal engineering by M.L.Mathur and F.S.Mehta, Jain Brothers.
- 3. Hydraulics & Fluid Mechanics, P.N.Modi and S.M.Seth, Standard Book House, Delhi.

Reference Books:

- 1. "Fluid Mechanic & Hydraulic Machinery", by A.K.Jain, Khanna Publishers, Delhi.
- 2. "Fluid Mechanics" by Victor.L.Streeter.
- 3. "Introduction to Fluid Mechanics" Edward.J.Shaughnessy Jr.
- 4. "Fluid Mechanics & Its Applications", Vijay Gupta, Santosh.k.Gupta
- 5. "Fluid Mechanic & Fluid Power Engineering", Dr.D.S.Kumar
- 6. "Water Power Engineering", M.M.Desumukh

I B.Tech I Semester

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowled
		ge Level
		(K)#
CO1	understand social or transactional dialogues spoken by native speakers of English	K2
	and identify the context, topic, and pieces of specific information	
CO2	ask and answer general questions on familiar topics and introduce oneself/others	K3
CO3	employ suitable strategies for skimming and scanning to get the general idea of andlocate specific information	a te K3
CO4	recognize paragraph structure and be able to match	K4
	beginnings/endings/headings with paragraphs	
CO5	form sentences using proper grammatical structures and correct word forms	K6
CO6	To promote learner autonomy in learning English language	K5

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

						-									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1									1	3		2			
CO2									1	3					
CO3										3		2			
CO4										3		1			
CO5										3		1			
CO6										3		2			

UNIT	CONTENTS	Contact Hours
	Note: Collect the syllabus from HSS BOS	
	Total	

I B.Tech I Semester

COURSE CODE – R2011XXYY	ELECTRICAL ENGINEERING WORKSHOP	CATEGORY BSC	L-T-P 0-0-3	CREDITS 1.5
-------------------------------	------------------------------------	-----------------	----------------	----------------

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Ensure the safety of electrical systems and wiring.	
	Explain the limitations, tolerances, safety aspects of electrical systems and	
	wiring.	
CO2	Specify wires/cables and other accessories used in different types of	
	electrical installations.	
CO3	Design and implement different lighting and power circuits.	
CO4		
CO4	l roubleshoot domestic electrical equipment.	
		1

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	1	2					2	2	2	1	1	2
CO2	2	1	2		1					1		2	1	1	2
CO3	3	2	1	1	1								1	1	2
CO4	3		1								2	2	1	1	2
CO5	1	1	2	1	2							2	1	1	2

S. No.	List of Experiments	Contact Hours
1.	Study of various electrical tools and symbols.	
2.	Study various types of electrical cables/wires, switches, fuses, fuse carriers, MCB, ELCB, RCCB and MCCB with their specifications and	
	usage.	
3.	Soldering and desoldering practice.	
4.	Identification of various types of resistors and capacitors and understand the usage digital multi-meter.	
5.	Identification of various semiconductor devices.	
6.	Study of Moving Iron, Moving Coil, Electro dynamic and Induction type meters.	
7.	Fluorescent lamp wiring.	
8.	Wiring of lighting circuit using two way control.(stair case wiring)	
9.	Godown wiring/ Tunnel wiring	

10.	Hospital wiring.	
11.	Measurement of voltage, current, power in DC circuit.	
12.	Wiring of power distribution arrangement using single phase MCB	
	distribution board with ELCB, main switch and energy meter for	
	calculating Power and Power Factor.	
13.	Understanding the concept of earth pit, importance of earth resistance	
	and its measurement.	
14.	Wiring of backup power supply for domestic Installations including	
	inverter, battery and load.	
15.	Troubleshooting of domestic electrical equipment's (tube light and fan).	
16.	Understand the usage of CRO, function generator. & Regulated power	
	supply and Measurement of ac signal parameters using CRO.	
17.	Assembling electronic components on breadboard.	
18.	Obtain V-I characteristics of Light Emitting Diode.	
	Total	

I B.Tech I Semester

COURSE CODE -PROGRAMMING FOR PROBLEMR2011XXYYSOLVING USING C LAB	CATEGORY	L-T-P	CREDITS
	ESC	0-0-3	1.5

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	To develop effective C-programs for various problems.	K3
CO2	To develop effective C-programs on matrices arithmetic.	K3
CO3	To design and develop C-programs using arrays.	K4
CO4	To optimize the C-programming code by using pointers.	K4
CO5	To develop software for file management by using C-programming.	K5

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	3	2				1	1	1	3	3	3
CO2	2	3	3	1	3	2				1	1	1	2	3	3
CO3	2	2	3	1	3	1				1	1	1	2	2	3
CO4	2	2	2	1	2	1				1	1	1	2	2	2
CO5	2	2	2	1	2	1				1	1	1	2	2	2

S.No.	List of Experiments					
		Hours				
1.	Exercise 1:					
	1. Write a C program to print a block F using hash (#), where the F					
	has a height of six characters and width of five and four characters.					
	2. Write a C program to compute the perimeter and area of a					
	rectangle with a height of 7 inches and width of 5 inches.					
	3. Write a C program to display multiple variables					
2.	Exercise 2:					
	4. Write a C program to calculate the distance between the two					
	points.					
	5. Write a C program that accepts 4 integers p, q, r, s from the user					
	where r and s are positive and p is even. If q is greater than r and					

	s is greater than p and if the sum of r and s is greater than the sum	
	of p and q print "Correct values", otherwise print "Wrong	
	values".	
3.	Exercise 3:	
	6. Write a C program to convert a string to a long integer.	
	7. Write a program in C which is a Menu-Driven Program to	
	compute the area of the various geometrical shape	
	8 Write a C program to calculate the factorial of a given number	
4.	Exercise 4:	
	9 Write a program in C to display the n terms of even natural	
	number and their sum	
	10 Write a program in C to display the n terms of harmonic series	
	and their sum	
	$1 \pm \frac{1}{2} \pm \frac{1}{3} \pm \frac{1}{4} \pm \frac{1}{5} = \frac{1}{n}$ terms	
	11 Write a C program to check whether a given number is an	
	Armstrong number or not	
5	Fyercise 5:	
5.	12 Write a program in C to print all unique elements in an array	
	13 Write a program in C to separate odd and even integers in	
	separate arrays	
	14 Write a program in C to sort elements of array in ascending	
	order	
6	Fyercise 6:	
0.	15 Write a program in C for multiplication of two square	
	Matrices	
	16 Write a program in C to find transpose of a given matrix	
	17. Write a program in C to find inverse of a given matrix.	
7	Fyercise 7:	
7.	18 Write a program in C to search an element in a row wise and	
	column wise sorted matrix	
	10 Write a program in C to print individual characters of string	
	in reverse order	
8	Fvarcisa 8:	
0.	20 Write a program in C to compare two strings without using	
	string library functions	
	21 Write a program in C to copy one string to another string	
	21. White a program in C to copy one string to another string.	
9.	Exercise 9:	
	22. Write a C Program to Store Information Using Structures	
	with Dynamically Memory Allocation	
	23. Write a program in C to demonstrate how to handle the	
	pointers in the program.	

10.	Exercise 10:	
	24. Write a program in C to demonstrate the use of & (address	
	of) and *(value at address) operator.	
	25. Write a program in C to add two numbers using pointers.	
11.	Exercise 11:	
	26. Write a program in C to add numbers using call by reference.	
	27. Write a program in C to find the largest element using	
	Dynamic Memory Allocation.	
12.	Exercise 12:	
	28. Write a program in C to swap elements using call by	
	reference.	
	29. Write a program in C to count the number of vowels and	
	consonants in a string using a pointer.	
13.	Exercise 13:	
	30. Write a program in C to show how a function returning	
	pointer.	
	31. Write a C program to find sum of n elements entered by user.	
	To perform this program, allocate memory dynamically using	
14	malloc() function.	
14.	Exercise 14:	
	32. Write a C program to find sum of n elements entered by user.	
	To perform this program, allocate memory dynamically using	
	calloc() function. Understand the difference between the	
	above two programs	
	so. while a program in C to convert declinar number to binary	
15	Fvercise 15.	
15.	34 Write a program in C to check whether a number is a prime	
	number or not using the function	
	35. Write a program in C to get the largest element of an array	
	using the function.	
16.	Exercise 16:	
	36. Write a program in C to append multiple lines at the end of a	
	text file.	
	37. Write a program in C to copy a file in another name.	
	38. Write a program in C to remove a file from the disk.	
17.	Exercise 17:	
	39. Write a program to create a data file.	
	40. Write a program to calculate the resonant frequency	
	of an RLC series circuit.	

18.	Exercise 18:	
	41. Write a program to solve sin x, cos x, tan x expressed in	
	exponential form where x is in radians – (i) $\frac{\pi}{4}$ (ii) $\pi/6$.	
	42. Write a program to draw a graph for $y = mx + C$ where the	
	constants 'm' and 'C' are defined and 'x' varies from 0 to 20	
	at intervals of 2 units.	
	43. Write a program to solve for 'x', if $2 \log x = 4 \log 3$.	
	Total	

I B.Tech I Semester

COURSE	PHYSICAL FITNESS ACTIVITIES	CATEGORY	L-T-P	CREDITS
CODE –		MC	0-0-2	1.5
R2011XXYY				
D				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															

UNIT	CONTENTS	Contact Hours
N	ote: Collect the syllabus from concerned BO	S
	Total	

I B.Tech II Semester

|--|

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	apply the Laplace transform for solving differential equations	L3
CO2	find or compute the Fourier series of periodic signals	L3
	and be able to apply integral expressions for the forwards and inverse	
	Fourier transform to a range of non-periodic waveforms	
CO3	identify solution methods for partial differential equations that model	L3
	physical processes	
CO4	interpret the physical meaning of different operators such as gradient,	L5
	curl and divergence	
CO5	estimate the work done against a field, circulation and flux using vector	L5
	calculus	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	DO1	DOJ	DO2	DO4	DO5	D O6	DO7	DOS	DOO	DO10	DO11	DO12	DSO1	DSO2	DSO2
	FUI	FU2	r03	r04	105	F00	FU/	FUo	F09	FOIU	rom	FO12	1301	1502	1303
CO1	3	2										2	2		
CO2	3	3										2	3		
CO3	2	2										1	2		
CO4	2	3										2	2		
CO5	3	3										2	3		

UNIT	CONTENTS	Contact										
		Hours										
UNIT - 1	Laplace Transforms	(10 hrs)										
	Definition of Laplace transform - Laplace transforms of standard											
	functions - Properties of Laplace Transforms: Shifting theorems -											
	Transforms of derivatives and integrals – Unit step function – Dirac's											
	delta function – Inverse Laplace transforms – Convolution theorem (with											
	out proof).											
	Applications: Solving ordinary differential equations (initial value											
	problems) and integro differential equations using Laplace transforms.											
UNIT - 2	Fourier series and Fourier Transforms:	(10 hrs)										
	Fourier Series: Introduction – Periodic functions – Fourier series of											

	periodic function – Dirichlet's conditions – Even and odd functions –	
	Change of interval – Half-range sine and cosine series.	
	Fourier Transforms: Fourier integral theorem (without proof) - Fourier	
	sine and cosine integrals - Sine and cosine transforms - Properties	
	(article-22.5 in text book-1) - inverse transforms - Convolution theorem	
	(without proof) – Finite Fourier transforms.	
UNIT - 3	Partial Differential Equations of first order	(08 hrs)
	Formation of partial differential equations by elimination of arbitrary	
	constants and arbitrary functions - Solutions of first order linear	
	(Lagrange) equation and nonlinear (standard types) equations.	
UNIT - 4	Second order PDE and Applications	(10 hrs)
	Second order PDE: Solutions of linear partial differential equations with	
	constant coefficients – Non-homogeneous term of the type	
	e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, $x^m y^n$.	
	Applications of PDE: Method of separation of Variables - Solution of	
	One dimensional Wave, Heat and two-dimensional Laplace equation.	
UNIT - 5	Vector calculus	(10 hrs)
	Differentiation of vectors - Scalar and vector point functions - Gradient -	
	Directional derivative – Divergence – Curl – Scalar potential.	
	Integration of vectors – Line integral – Circulation – Work done – Surface	
	integral – Flux – Volume integral – Vector integral theorems: Greens.	
	Stokes and Gauss Divergence theorems (without proof) and their	
	applications.	
	Total	

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
 Dean. G. Duffy, Advanced Engineering Mathematics with MATLAB, 3rd Edition, CRC Press.
- 3. Peter O' Neil, Advanced Engineering Mathematics, Cengage.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

I B.Tech II Semester

COURSE CODE – R2011XXYY	APPLIED PHYSICS	CATEGORY BSC	L-T-P 3-0-0	CREDITS 3

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

			Knowledge
			Level (K)#
CO1	\checkmark	Explain the need of coherent sources and the conditions for sustained	
		interference (L2)	
	\triangleright	Identify engineering applications of interference (L3)	
	\triangleright	Analyze the differences between interference and diffraction with	
		applications (L4)	
	\succ	Illustrate the concept of polarization of light and its applications (L2)	
	\succ	Classify ordinary polarized light and extraordinary polarized light (L2)	
CO2	\checkmark	Understand the basic concepts of LASER light Sources (L2)	
	\triangleright	Apply the concepts to learn the types of lasers (L3)	
	\succ	Identifies the Engineering applications of lasers (L2)	
	\succ	Explain the working principle of optical fibers (L2)	
	\triangleright	Classify optical fibers based on refractive index profile and mode of	
		propagation (L2)	
	\triangleright	Identify the applications of optical fibers in various fields (L2)	
CO3	\triangleright	Explain the concept of dielectric constant and polarization in dielectric	
		materials (L2)	
	\succ	Summarize various types of polarization of dielectrics (L2)	
	\triangleright	Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)	
	\triangleright	Classify the magnetic materials based on susceptibility and their temperature	
		dependence (L2)	
	\succ	Explain the applications of dielectric and magnetic materials (L2)	
	\triangleright	Apply the concept of magnetism to magnetic data storage devices (L3)	
CO4	\triangleright	Explain the concept of dual nature of matter (L2)	
	\triangleright	Understand the significance of wave function (L2)	
	\triangleright	Interpret the concepts of classical and quantum free electron theories (L2)	
	\succ	Explain the importance of K-P model	
	\triangleright	Classify the materials based on band theory (L2)	
	\triangleright	Apply the concept of effective mass of electron (L3)	
CO5	\triangleright	Explain the concept of dual nature of matter (L2)	
	\triangleright	Understand the significance of wave function (L2)	
	\triangleright	Interpret the concepts of classical and quantum free electron theories (L2)	
	\triangleright	Explain the importance of K-P model	
		Classify the materials based on band theory (L2)	
	\triangleright	Apply the concept of effective mass of electron (L3)	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					_	-									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2	1				1										
CO3		1	1												
CO4		1													
CO5	1		1										1	1	

UNIT	CONTENTS	Contact
LINUT 1	Warra Ordina	Hours
UNII - 1	wave opucs Interference: Introduction Principle of superposition Interference of light	(10Hrs)
	Interference in this films (Reflection Geometry) and its applications Colors	
	in thin films. Newton's Rings. Determination of wavelength and refractive	
	index	
	Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer	
	diffraction due to single slit. double slit - N-slits (Oualitative) – Diffraction	
	Grating - Dispersive power and resolving power of Grating (Qualitative).	
	Polarization: Introduction-Types of polarization - Polarization by reflection,	
	refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave	
	plates.	
UNIT - 2	Lasers and Fiber optics	(08Hrs)
	Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated	
	emissions of radiation – Einstein's coefficients – Population inversion –	
	Lasing action - Pumping Schemes – Ruby laser – He-Ne laser - Applications	
	of lasers.	
	Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle -	
	Numerical Aperture -Classification of optical fibers based on refractive index	
	profile and modes – Propagation of electromagnetic wave through optical	
LINUT 2	fiber - Applications.	(0011
UNI1 - 3	Dielectric and Magnetic Materials	(U8HIS)
	polarizability Susceptibility and Dielectric constant. Types of polarizations	
	Flactronic (Quantitativa) Jonic (Quantitativa) and Orientation polarizations	
	(Qualitative) - Lorentz internal field - Clausius-Mossotti equation -	
	Piezoelectricity	
	Magnetic Materials: Introduction - Magnetic dipole moment – Magnetization	
	- Magnetic susceptibility and permeability - Origin of permanent magnetic	
	moment - Classification of magnetic materials: Dia, para, Ferro, antiferro &	
	Ferri magnetic materials - Domain concept for Ferromagnetism and Domain	
	walls (Qualitative) - Hysteresis - soft and hard magnetic materials.	
UNIT - 4	Quantum Mechanics, Free Electron Theory and Band theory	(10Hrs)
	Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty	

	Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation - Hall effect – Hall coefficient –Applications of Hall effect. Superconductors: Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory (Qualitative) – Josephson effects (AC and DC) – SQUIDs – High T _c superconductors – Applications of superconductors.	
	Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation - Hall effect – Hall coefficient –Applications of Hall effect. Superconductors : Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory (Qualitative) – Josephson effects (AC and DC) – SQUIDs	
	Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation - Hall effect – Hall coefficient –Applications of Hall effect. Superconductors : Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory (Qualitative) –	
	Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation - Hall effect – Hall coefficient –Applications of Hall effect. Superconductors : Introduction – Properties of superconductors – Meissner	
	Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation - Hall effect – Hall coefficient –Applications of Hall effect.	
	Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation - Hall effect – Hall coefficient –Applications of	
	Fermi energy on carrier concentration and temperature - Drift and diffusion	
	level – extrinsic semiconductors – density of charge carriers – dependence of	
	semiconductors – Density of charge carriers – Electrical conductivity – Fermi	
UNIT - 5	Semiconductors and Superconductors Introduction- Intrinsic	(12Hrs)
	of crystalline solids-concept of hole.	
	E vs K diagram - v vs K diagram - effective mass of electron - Classification	
	model (Qualitative)-	
	Band theory of Solids: Bloch's Theorem (Qualitative) - Kronig - Penney	
	distribution- Density of states (3D) - Fermi energy.	
	for electrical conductivity based on quantum free electron theory- Fermi-Dirac	
	discussion of merits and demerits) – Quantum free electron theory– Equation	
	Free Electron Theory: Classical free electron theory (Qualitative with	
	infinite potential well.	
1	independent and dependent wave equations– Particle in a one-dimensional	
	Finiciple – Significance and properties of wave function – Schlodinger Stinic	

Text books:

1. Engineering Physics by M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy S.Chand Publications, 11th Edition 2019.

2. Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press (2018).

3. Applied Physics by P.K.Palanisamy ,SciTech publications (2018)

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley & Sons, 11th Edition (2018)
- 2. Engineering Physics by M.R.Srinivasan, New Age international publishers (2014).
- 3. Engineering Physics by Shatendra Sharma, Jyotsna Sharma, "", Pearson Education (2018)
- 4. Engineering Physics by Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press(2016)
- 5. Semiconductor physics and devices- Basic principle Donald A, Neamen, Mc Graw Hill(2014)
- 6. Engineering Physics by B.K. Pandey and S. Chaturvedi, , Cengage Learning(2018)
- 7. University Physics by H.D. Young and R.A. Freedman, Pearson(2017)

I B.Tech II Semester

COURSE CODE – R2011XXYY	DATA STRUCTURES THROUGH C	CATEGORY ESC	L-T-P 3-0-0	CREDITS 3
D • • •				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	To develop C-programs on the implementation of Stacks, Oueues and	K3
	Circular Queues.	
CO2	To design and develop Data Structures using arrays and linked lists	K3
CO3	To implement C-programs for various operations on Binary Search Trees and	K4
	Heaps.	
CO4	To develop effective software for sorting the given data.	K5
CO5	To demonstrate effective searching techniques to find the given value in	K5
	database.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	-	1	-	-	-	-	-	-	1	1	2	1
CO2	2	2	-	-	1	-	-	-	-	-	-	1	1	2	1
CO3	2	2	2	2	2	-	-	-	-	-	-	1	1	2	1
CO4	2	2	3	2	3	-	-	-	-	-	-	2	1	2	1
CO5	2	2	3	2	3	-	-	-	-	-	-	2	1	2	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Linear Data Structures: Arrays, Stacks And Queues	
	Data Structures -Operations-Abstract Data Types-Complexity of	
	Algorithms-Time and Space-Arrays-Representation of Arrays-Linear	
	Arrays-Insertion-Deletion and Traversal of a Linear Array-Array as an	
	Abstract Data Type-Multi-Dimensional arrays-Strings-String Operations-	
	Storing Strings-String as an Abstract Data Type	
	Stack -Array Representation of Stack-Stack Abstract Data Type-	
	Applications of Stacks: Prefix-Infix and Postfix Arithmetic Expressions-	
	Conversion-Evaluation of Postfix Expressions-Recursion-Towers of	
	Hanoi-Queues-Definition-Array Representation of Queue-The Queue	
	Abstract Data Type-Circular Queues-Dequeues-Priority Queues.	
UNIT - 2	Linked Lists	

	Pointers-Pointer Arrays-Linked Lists-Node Representation-Single Linked	
	List-Traversing and Searching a Single Linked List-Insertion into and	
	Delation from a Single Linked List Header Linked Lists Circularly, Linked	
	Deletion from a Single Linked List-Header Linked Lists-Circularly Linked	
	Lists-Doubly Linked Lists-Linked Stacks and Queues-Polynomials-	
	Polynomial Representation-Sparse Matrices.	
UNIT - 3	Trees	
	Terminology-Representation of Trees-Binary Trees-Properties of Binary	
	Trees-Binary Tree Representations-Binary Tree Traversal-Preorder-Inorder	
	and Postorder Traversal-Threads-Thread Binary Trees-Balanced Binary	
	Trees-Heaps-Max Heap-Insertion into and Deletion from a Max Heap-	
	Binary Search Trees-Searching-Insertion and Deletion from a Binary	
	Search Tree-Height of Binary Search Tree, m-way Search Trees, B-Trees.	
UNIT - 4	Graphs	
	Graph Theory Terminology-Graph Representation-Graph Operations-	
	Depth First Search-Breadth First Search-Connected Components-Spanning	
	Trees-Biconnected Components-Minimum Cost Spanning Trees-Kruskal's	
	Algorithm Prism's Algorithm Shortest Paths Transitive Closure All Pairs	
	Algorithm-1 fishes Algorithm-Shortest 1 duis- Hansitive Closure-All-1 dus	
	Shortest Path-warshall's Algorithm.	
UNIT - 5	Searching And Sorting	
	Searching: Linear Search, Binary Search, Fibonacci Search, Hashing-	
	Sorting: Definition. Bubble Sort, Insertion sort, Selection Sort, Quick Sort,	
	Merging: Merge Sort, Iterative and Recursive Merge Sort, Shell Sort,	
	Radix Sort, Heap Sort.	
	Total	
	Total	

Text Books:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E.Horowitz, S.Sahni and Susan Anderson Freed, Universities Press Pvt. Ltd.
- 2. Data Structures With C, Seymour Lipschutz, Schaum's Outlines, Tata McGraw Hill.

Reference Books:

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill
- 2. Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson

I B.Tech II Semester

COURSE ELECTRICAL CIRCUIT ANALYSIS -I CATEGORY ELECTRICAL CIRCUIT ANALYSIS -I ESC 3 R2011XXYY	L-1-P 3-0-0	3
R2011XXYY		

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Examine various electrical networks in presence of active and passive	
	elements.	
CO2	Analyze electrical networks with network topology concepts.	
CO3	Analyze magnetic circuit with various dot conventions.	
CO4	Calculate the parameters of R, L, C network with sinusoidal excitation.	
CO5	Calculate the parameters of R, L, network with variation of any one of the	
	parameters i.e R, L, C and f.	
CO6	Solve Electrical networks by using principles of network theorems.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2										2	3	1
CO2	3	3	2										2	3	1
CO3	3	3	2										2	3	1
CO4	3	3	2										2	3	1
CO5	3	3	2										2	3	1
	3	3	2										2	3	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction to Electrical Circuits	
	Basic Concepts of passive elements of R, L, C and their V-I relations,	
	Sources (dependent and independent), Kirchoff's laws, Network reduction	
	techniques(series, parallel, series - parallel, star-to-delta and delta-to-star	
	transformation), source transformation technique, nodal analysis and mesh	
	analysis to DC networks with dependent and independent voltage and	
	current sources., node and mesh analysis.	
UNIT - 2	Magnetic Circuits	
	Basic definition of MMF, flux and reluctance, analogy between electrical	
	and magnetic circuits, Faraday's laws of electromagnetic induction -	

	concept of self and mutual inductance, Dot convention - coefficient of	
	coupling and composite magnetic circuit, analysis of series and parallel	
	magnetic circuits.	
UNIT - 3	Single Phase A.C Systems	
	Periodic waveforms (determination of rms, average value and form factor),	
	concept of phasor, phase angle and phase difference - waveforms and	
	phasor diagrams for lagging, leading networks, complex and polar forms of	
	representations. node and mesh analysis.	
	Steady state analysis of R, L and C circuits, power factor and its	
	significance, real, reactive and apparent power, waveform of instantaneous	
	power and complex power.	
UNIT - 4	Resonance - Locus Diagrams	
	series and parallel resonance, selectively band width and Quality factor,	
	locus diagram- RL, RC, RLC with R, L and C variables.	
UNIT - 5	Network theorems (DC & AC Excitations)	
	Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum	
	Power Transfer theorem, Reciprocity theorem, Millman's theorem and	
	compensation theorem.	
	Total	

Text Books:

- 1. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley,Mc Graw Hill Company,6th edition.
- 2. Network Analysis: Van Valkenburg; Prentice-Hall of India Private Ltd

Reference Books:

- 1. Fundamentals of Electrical Circuits by Charles K.Alexander and Mathew N.O.Sadiku, Mc Graw Hill Education (India)
- 2. Linear Circuit Analysis by De Carlo, Lin, Oxford publications
- 3. Electric Circuits (Schaum's outlines) by Mahmood Nahvi & Joseph Edminister, Adapted by Kuma Rao, 5th Edition Mc Graw Hill.
- 4. Electric Circuits by David A. Bell, Oxford publications
- 5. Introductory Circuit Analysis by Robert L Boylestad, Pearson Publications
- 6. Circuit Theory(Analysis and Synthesis) by A.Chakrabarthi,Dhanpat Rai&Co.

I B.Tech II Semester

|--|

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)#
CO1	Understand the basic principles of engineering drawing and construction of curves used in engineering field.	
CO2	Practice the representation of geometric physical quantities (Length, Area and Volume) in the form of scales.	
CO3	Apply the knowledge of interpretation of projection in different quadrants.	
CO4	Understand the projections of solids, when it is inclined to both planes simultaneously.	
CO5	Convert the pictorial views into orthographic views.	
CO6	Create intricate details of components through 3D-isometric Pictorial Projection.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1				2		1					2	2		
CO2	2	2	3		3		2	2			3				2
CO3	3								3	2			2	2	
CO4	2	3	3								2	3			
CO5		2		2	3		3							2	2
CO6	2					3				1	3		2		2

(Please fill the above with Levels of Correlation, viz., L, M, H)

UNIT			(CONTE	NTS					Cont	tact	
										Hou	rs	
Course	Objective:	Engineering	drawing	being	the	principle	method	of	communic	ation	for	
engineers, the objective is to introduce the students, the techniques of constructing the various types											pes	
of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in												

planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on

circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents & normals for the curves.

Unit II

Objective: To introduce the students to use scales and orthographic projections, projections of points & simple lines.

Scales: Plain scales, diagonal scales and vernier scales

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Unit III

Objective: The objective is to make the students draw the projections of the lines inclined to both the planes.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit IV

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit V

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to one of the planes.

Unit VI

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Total

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

I B.Tech II Semester

	COURSE CODE – R2011XXYY	THERMAL AND HYDRO PRIME MOVERS LAB	CATEGORY ESC	L-T-P 0-0-3	CREDITS 1.5
--	-------------------------------	---------------------------------------	-----------------	----------------	----------------

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															
(7)	0111					â									

S.No.	CONTENTS	Contact Hours
	NOTE: TO CONDUCT MINIMUM OF 12 EXPERIMENTS BY	
	CONDUCTING MINIMUM OF SIX FROM EACH SECTION	
	SECTION A - THERMAL ENGINEERING LAB	
1.	I.C. Engines valve / port timing diagrams.	
2.	I.C. Engines performance test on 4 -stroke Diesel engine.	
3.	I.C. Engines performance test on 2-stroke petrol engine.	
4.	Evaluation of engine friction by conducting Morse test on 4-stroke multi	
	cylinder petrol engine	
5.	Determination of FP by retardation and motoring test on IC engine	
6.	I.C. Engine heat balance on petrol / Diesel engines.	
7.	Economical speed test of an IC engine	
8.	Study of boilers	

	SECTION B –HYDRAULIC MACHINES LAB	
1.	Impact of jets on Vanes.	
2.	Performance Test on Pelton Wheel.	
3.	Performance Test on Francis Turbine.	
4.	Performance Test on Kaplan Turbine.	
5.	Performance Test on Single Stage Centrifugal Pump.	
6.	Performance Test on Reciprocating Pump.	
7.	Calibration of Venturimeter.	
8.	Calibration of Orifice meter.	
9.	Determination of loss of head due to sudden contraction in a pipeline.	

I B.Tech II Semester

COURSE CODE – R2011XXYY	APPLIED PHYSICS LABORATORY	CATEGORY BSC	L-T-P 0-0-3	CREDITS 1.5
D				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1														
CO2	1		1		1										
CO3	1		1												
CO4	1		1		1										

S.No.	CONTENTS	Contact Hours
	(Any 10 of the following listed experiments)	liouis
1.	Determination of thickness of thin object by wedge method.	
2.	Determination of radius of curvature of a given plano convex lens by Newton's rings.	
3.	Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.	
4.	Determination of Resolving power of telescope.	
5.	Determination of dielectric constant using charging and discharging method.	
6.	Study the variation of B versus H by magnetizing the magnetic material (B-H curve).	
7.	Determination of numerical aperture and acceptance angle of an optical fiber.	
8.	Determination of wavelength of Laser light using diffraction grating.	
9.	Estimation of Planck's constant using photoelectric effect.	

10.	Determination of the Resistivity of semiconductor by four probe method.	
11.	Determination of the energy gap of a semiconductor using p-n junction diode.	
12.	Magnetic field along the axis of a current carrying circular coil by Stewart & Gee's Method	
13.	Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect.	
14.	Determination of the temperature coefficients of a given thermistor.	
15.	Determination of Acceleration due to gravity and Radius of gyration using Compound pendulum.	

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text Book of Practical Physics"- S Chand Publishers, 2017.

I B.Tech II Semester

COURSE CODE – R2011XXYY	DATA STRUCTURES THROUGH C LAB	CATEGORY ESC	L-T-P 0-0-3	CREDITS 1.5

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	To develop C-programs on the implementation of Stacks, Queues and	K3
	Circular Queues.	
CO2	To design and develop Data Structures using arrays and linked lists	K3
CO3	To implement C-programs for various operations on Binary Search Trees and	K4
	Heaps.	
CO4	To develop effective software for sorting the given data.	K5
CO5	To demonstrate effective searching techniques to find the given value in	K5
	database.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

						-									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	3	2				1	1	1	2	1	1
CO2	2	3	3	1	3	2				1	1	1	2	1	1
CO3	2	2	3	1	3	1				1	1	1	2	1	1
CO4	2	2	2	1	2	1				1	1	1	2	1	1
CO5	2	2	2	1	2	1				1	1	1	2	1	1

UNIT	CONTENTS	Contact Hours
	To develop a program and implement	
1.	Operations on Strings.	
2.	Basic operations on Stacks.	
3.	Basic operations on Queue.	
4.	Basic operations on Circular Queue.	
5.	Multi stack in a single array.	
6.	List data structure using i) array ii) singly linked list.	
7.	Basic operations on doubly linked list.	
8.	Basic operations (insertion, deletion, search, find min and find max) on	
	Binary Search trees.	
	To develop a program and implementation of	
1.	Heaps.	

2.	Breadth First Search Techniques.	
3.	Depth First Search Techniques.	
4.	Prim's algorithm.	
5.	Kruskal's Algorithm.	
6.	Linear search.	
7.	Fibanocci search.	
8.	Merge sort.	
9.	Quick sort.	
	Total	

I B.Tech II Semester

R2011XXYY	COURSE CODE – R2011XXYY	APPLIED PHYSICS VIRTUAL LABORATORY	CATEGORY BSC	L-T-P 0-0-2	CREDITS 0
-----------	-------------------------------	---------------------------------------	-----------------	----------------	--------------

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1														
CO2	1		1		1										
CO3	1		1												
CO4	1		1		1										
					-										

S.No.	CONTENTS	Contact Hours
	(Any 5 of the following listed 10 experiments)	
1.	Hall Effect	
2.	Brewster's angle	
3.	Numerical Aperture of Optical fiber	
4.	Photoelectric Effect	
5.	Michelson's interferometer	
6.	Newton's rings –Refractive index of liquid	
7.	Dispersive power of a prism	
8.	Resolving power of the prism	

9.	Magnetic susceptibility by Quincke's method	
10.	AC Sonometer	
	Total	

URL: www.vlab.co.in

I B.Tech II Semester

COURSE	CONSTITUTION OF INDIA	CATEGORY	L-T-P	CREDITS
R2011XXYY		MC	2-0-0	v
D				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge											
		Level (K)#											
CO1	Understand historical background of the constitution making and its												
	importance for building a democratic India.												
CO2	Understand the functioning of three wings of the government ie.,												
	executive, legislative and judiciary.												
CO3	Understand the value of the fundamental rights and duties for becoming												
	good citizen of India.												
CO4	Analyze the decentralization of power between central, state and local												
	self-government.												
CO5	Apply the knowledge in strengthening of the constitutional institutions												
	like CAG, Election Commission and UPSC for sustaining democracy.												
	Know the sources, features and principles of Indian Constitution.												
	> Learn about Union Government, State government and its												
	administration.												
	Get acquainted with Local administration and Pachayati Raj.												
	Be aware of basic concepts and developments of Human Rights.												
	Gain knowledge on roles and functioning of Election Commission												

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2			2	2		2			2			1
CO2			3			3	3		3			2			1
CO3			3			3	3		3			2			1
CO4			2			2	2		2			1			1
CO5			3			3	3		3			3			2

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.	
UNIT – 2	Union Government and its Administration Structure of the Indian	

UNIT – 3	Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers and Functions; State Government and its Administration Governor - Role and Position -	
•	CM and Council of ministers, State Secretariat: Organisation, Structure	
	and Functions	
UNIT – 4	A.Local Administration - District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative - CEO of Municipal Corporation PachayatiRaj: Functions PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy	
UNIT – 5	Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission:, Functions of Commissions for the welfare of SC/ST/OBC and women	
	Total	

References:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.. New Delhi
- 2. SubashKashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj IndianGovernment and Politics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd.. New Delhi
- 9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

E-resources:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

I B.Tech II Semester

COURSE CODE – R2011XXYY	ENGINEERING EXPLORATION PROJECT- DESIGN THINKING	CATEGORY MC	L-T-P 0-0-1	CREDITS 0

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															
						~				**					

UNIT	CONTENTS	Contact Hours
	Total	

II B.Tech I Semester

COURSE CODE – R2011XXYY	MATHEMATICS-IV (Complex Variable and Statistical Methods)	CATEGORY BSC	L-T-P 3-0-0	CREDITS 3
T				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	apply Cauchy-Riemann equations to complex functions in order to	L3
	determine whether a given continuous function is analytic	
CO2	find the differentiation and integration of complex functions used in	L5
	engineering problems	
CO3	make use of the Cauchy residue theorem to evaluate certain integrals	L3
CO4	apply discrete and continuous probability distributions	L3
CO5	design the components of a classical hypothesis test	L6
	infer the statistical inferential methods based on small and large sampling	
	tests	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3										1	3		
CO2	2	2										1	2		
CO3	3	3										2	3		
CO4	3	3										2	1		
CO5	3	3										3	2		

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Functions of a complex variable and Complex integration:	
	Introduction – Continuity – Differentiability – Analyticity – Cauchy-	(10hrs)
	Riemann equations in Cartesian and polar coordinates – Harmonic and	
	Complex integration: Line integral Cauchy's integral theorem	
	Cauchy's integral formula – Generalized integral formula (all without proofs) and problems on above theorems.	
UNIT - 2	Series expansions and Residue Theorem:	(10hrs)

	Radius of convergence - Expansion in Taylor's series, Maclaurin's series	
	and Laurent series.	
	Types of Singularities: Isolated – Essential – Pole of order m – Residues –	
	Residue theorem (without proof) – Evaluation of real integral of the types	
	$\int_{-\infty}^{\infty} f(x) dx \text{ and } \int_{c}^{c+2\pi} f(\cos\theta, \sin\theta) d\theta.$	
UNIT - 3	Probability and Distributions:	(10hrs)
	Review of probability and Baye's theorem - Random variables - Discrete	
	and Continuous random variables - Distribution functions - Probability	
	mass function, Probability density function and Cumulative distribution	
	functions - Mathematical Expectation and Variance - Binomial, Poisson,	
	Uniform and Normal distributions.	
UNIT - 4	Sampling Theory:	(8hrs)
	Introduction – Population and Samples – Sampling distribution of Means	
	and Variance (definition only) - Central limit theorem (without proof) -	
	Representation of the normal theory distributions – Introduction to t, χ^2	
	and F-distributions - Point and Interval estimations - Maximum error of	
	estimate.	
UNIT - 5	Tests of Hypothesis:	(10hrs)
	Introduction – Hypothesis – Null and Alternative Hypothesis – Type I and	
	Type II errors – Level of significance – One tail and two-tail tests – Test of	
	significance for large samples: Single and two means – Single and two	
	proportions - Student's t- distribution: Significance test of a sample mean	
	 Significance test of difference between sample means. 	
	Total	

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. Miller and Freund's, Probability and Statistics for Engineers, 7/e, Pearson, 2008.

Reference Books:

- **1.** J. W. Brown and R. V. Churchill, Complex Variables and Applications, 9th edition, Mc-Graw Hill, 2013.
- **2.** S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.
- 3. **Jay l. Devore,** Probability and Statistics for Engineering and the Sciences, 8th Edition, Cengage.
- 4. Shron L. Myers, Keying Ye, Ronald E Walpole, Probability and Statistics Engineers and the Scientists, 8th Edition, Pearson 2007.
- 5. **Sheldon, M. Ross**, Introduction to probability and statistics Engineers and the Scientists, 4th Edition, Academic Foundation, 2011

II B.Tech I Semester

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Apply the basic concepts of semiconductor physics.	K4
CO2	Understand the formation of p-n junction and how it can be used as a p-n junction as diode in different modes of operation.	K5
CO3	Know the construction, working principle of rectifiers with and without filters with relevant expressions and necessary comparisons.	K1
CO4	Understand the construction, principle of operation of transistors, BJT and FET with their V-I characteristics in different configurations.	K1
CO5	Know the need of transistor biasing, various biasing techniques for BJT and FET and stabilization concepts with necessary expressions & small signal low frequency transistor amplifier circuits using BJT and FET in different configurations.	K6

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	3												
CO2						3									
CO3	3				2								1		
CO4		3		1										2	
CO5	1		1		3										3

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Review of Semi-Conductor Physics:	12
	Hall effect, continuity equation, law of junction, Fermi Dirac function,	
	Fermi level in intrinsic and extrinsic Semiconductors.	
	Junction Diode Characteristics :	
	energy band diagram of PN junction Diode, Open circuited p-n junction,	
	Biased p-n junction, p-n junction diode, current components in PN junction	
	Diode, diode equation, V-I Characteristics, temperature dependence on V-I	
	characteristics, Diode resistance, Diode capacitance.	

UNIT - 2	Special Semiconductor Devices:	12
	Zener Diode, Breakdown mechanisms, Zener diode applications, LED,	
	Varactor Diode, Photodiode, Tunnel Diode, UJT, PNPN Diode, SCR.	
	Construction, operation and V-I characteristics.	
	Rectifiers and Filters:	
	Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge	
	rectifier, derivations of characteristics of rectifiers, rectifier circuits-	
	operation, input and output waveforms, Filters, Inductor filter(Series	
	inductor), Capacitor filter(Stunt inductor), π -Filter, comparison of various	
	filter circuits in terms of ripple factors.	
UNIT - 3	BJT: Junction transistor, transistor current components, transistor	12
	equation, transistor configurations, transistor as an amplifier, and	
	characteristics of transistor in Common Base, Common Emitter and	
	Common Collector configurations, Ebers-Moll model of a transistor, punch	
	through/ reach through, Photo transistor, typical transistor junction voltage	
	values.	
	FET: FET types, construction, operation, characteristics μ , g_m , r_d	
	parameters, MOSFET-types, construction, operation, characteristics,	
	comparison between JFET and MOSFET.	
UNIT - 4	Transistor Biasing and Thermal Stabilization : Need for biasing,	12
	operating point, load line analysis, BJT biasing- methods, basic stability,	
	fixed bias, collector to base bias, self-bias, Stabilization against variations	
	in V _{BE} , Ic, and β , Stability factors, (S,S,S), Bias compensation, Thermal	
	runaway, Thermal stability.	
	FET Biasing- methods and stabilization.	10
UNIT - 5	BJT: Two port network, Transistor hybrid model, determination of h-	12
	parameters, conversion of h-parameters, generalized analysis of transistor	
	amplifier model using h-parameters, Analysis of CB, CE and CC	
	amplifiers using exact and approximate analysis, Comparison of transistor	
	amplifiers.	
	FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers	
	CD amplifiers, comparison of FET amplifiers.	60
	10001	00

Text Books:

- 1. Electronic Devices and Circuits- J. Millman, C. Halkias, Tata Mc-Graw Hill, SecondEdition,2007
- 2. Electronic Devices and Circuits by David A. Bell, Oxford University Press
- 3. Electronics devices & circuit theory- Robert L.Boylestad and LouiNashelsky, Pearson/Prentice hall, tenth edition,2009

Reference Books:

- 1. Integrated Electronics-J. Millman, C. Halkias, Tata Mc-Graw Hill, Second Edition, 2009
- 2. Electronic Devices and Circuits-K. Lal Kishore, BS Publications, Fourth Edition, 2016.
- 3. Electronic Devices and Circuits-Salivahanan, Kumar, Vallavaraj, Tata Mc-Graw Hill, 4th Edition,2008.
- 4. Electronic Devices and Integrated Circuits B.P. Singh, Rekha, Pearson publications, 2006.

II B.Tech I Semester

COURSE CODE – R2011XXYY	ELECTRICAL CIRCUIT ANALYSIS - II	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
D				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)#
CO1	Solve three phase circuits under balanced and unbalanced conditions.	
CO2	Find the transient response of electrical networks for different types of excitations.	
CO3	Find the parameters of different types of networks.	
CO4	Realize electrical equivalent networks for a given network transfer function.	
CO5	Analyse electrical circuits using applications of Fourier series and Fourier	
	transforms.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2									2	3	1
CO2	3	3	2	2									2	3	1
CO3	3	3	2	2									2	3	1
CO4	3	3	2	2									2	3	1
CO5	3	3	2	2									2	3	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Balanced and Unbalanced Three phase circuits	
	Analysis of three phase balanced circuits:	
	Phase sequence, star and delta connection of sources and loads, relation	
	between line and phase voltages and currents, analysis of balanced three	
	phase circuits, measurement of active and reactive power.	
	Analysis of three phase unbalanced circuits:	
	Loop method, Star-Delta transformation technique, two wattmeter method	
	for measurement of three phase power.	
UNIT - 2	Transient Analysis in DC Circuits	
	Transient response of First order (R-L, R-C) and second order (R-L-C)	
	circuits using differential equations.	

Transient response of First order (R-L, R-C) and second order (R-L-C)	
circuits using Laplace transforms.	
Transient Analysis in AC circuits	
Transient response of First order (R-L, R-C) and second order (R-L-C)	
circuits using differential equations.	
Transient response of First order (R-L, R-C) and second order (R-L-C)	
circuits using Laplace transforms.	
Two Port Networks	
Two port network parameters – Z, Y, ABCD and Hybrid parameters and	
their relations, cascaded networks.	
Filters	
Need of Filters - Classification - Characteristic impedance - Low Pass	
Filter, High Pass Filter, Band Pass Filter, Band Stop or Band Elimination	
Filter, m-Derived Filter, Composite filters – Design of Filters.	
Total	
	Transient response of First order (R-L, R-C) and second order (R-L-C) circuits using Laplace transforms. Transient Analysis in AC circuits Transient response of First order (R-L, R-C) and second order (R-L-C) circuits using differential equations. Transient response of First order (R-L, R-C) and second order (R-L-C) circuits using Laplace transforms. Two Port Networks Two port network parameters – Z, Y, ABCD and Hybrid parameters and their relations, cascaded networks. Filters Need of Filters – Classification - Characteristic impedance - Low Pass Filter, High Pass Filter, Band Pass Filter, Band Stop or Band Elimination Filter, m-Derived Filter, Composite filters – Design of Filters. Total

Text Books:

- 1. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley, McGraw Hill Company, 9th edition, 2018.
- 2. Network analysis: Van Valkenburg: Prentice-Hall of India Private Ltd, 3rd edition, 2019.

Reference Books:

- 1. Fundamentals of Electrical Circuits by Charles K.Alexander and Mathew N.O.Sadiku, McGraw Hill Education (India), 6th edition, 2019.
- 2. Introduction to circuit analysis and design by Tildon H Glisson. Jr, Springer Publications, 1st edition, 2011.
- 3. Circuits by A. Bruce Carlson, Cengage Learning Publications, 1st edition, 2008.
- 4. Network Theory Analysis and Synthesis by Smarajit Ghosh, PHI publications, ninth print, 2015.
- 5. Networks and Systems by D. Roy Choudhury, New Age International publishers, 2nd edition, 2013.
- 6. Electric circuit by Joseph Edminister, schaum's outlines series, seventh edition, 2017.
- 7. Electric Circuits by David A. Bell, Oxford publications, 7th edition, 2009.
- 8. Circuit Theory (Analysis and Synthesis) by A.Chakrabarthi, DhanpatRai & Co, 7th Revised edition, 2018).

II B.Tech I Semester

COURSE CODE – R2011XXYY	DC MACHINES AND TRANSFORMERS	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
Due neguiaite.				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Understand the unifying principles of electromagnetic energy conversion,	2
	construction and principle of operation of DC machines	
CO2	Understand Armature reaction and commutation principles of DC	3
	machines and illustrate the characteristics of DC motors	
CO3	Illustrate speed control methods and testing methods of DC machines.	3
	Develop the equivalent circuit of a single-phase transformer	
CO4	Apply testing methods for performance evaluation of single-phase	4
	transformer and describe the operation of autotransformer	
CO5	Analyze the effect of harmonics in three-phase transformers and	4
	understand the functioning of off-load and on-load tap changers, Scott	
	connection	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	1	-	-	-	-	1	2	2	2	2
CO2	3	2	2	2	-	1	-	-	-	-	1	3	3	2	2
CO3	3	3	2	2	-	1	-	-	-	-	1	3	3	3	2
CO4	3	3	2	2	-	1	-	-	-	-	1	3	3	3	2
CO5	3	3	2	2	-	1	-	-	-	-	1	3	3	3	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Week)

UNIT	CONTENTS								
		Hours							
UNIT - 1	Electromechanical Energy Conversion and introduction to DC								
	machines								
	Principles of electromechanical energy conversion - singly excited and								
	multi excited systems- calculation of force and torque using the concept of								
	co-energy.								
	Construction and principle of operation of DC machines – EMF equation								
	for generator –Excitation techniques– characteristics of DC shunt generator								
	–applications of DC Generators.								
UNIT - 2	Operation of DC motors								
	Back-emf and torque equations of dc motors - Armature reaction and								

	commutation – characteristics of separately-excited, shunt, series and	
	compound motors – losses and efficiency – applications of dc motors.	
	Necessity of a starter – starting by 3 point and 4 point starters.	
UNIT - 3	Speed Control of motors and Testing of DC Machines	
	Speed control by armature voltage and field control – testing of DC	
	machines – brake test, Swinburne's method – principle of regenerative or	
	Hopkinson's method – retardation test –field's test- separation of losses.	
	Single-phase Transformers	
	Types and constructional details – principle of operation –emf equation –	
	operation on no load and on load – lagging, leading and unity power	
	factors loads –phasor diagrams of transformers – equivalent circuit.	
UNIT - 4	Performance and testing of transformers and auto transformers:	
	Regulation – losses and efficiency – effect of variation of frequency and	
	supply voltage on losses – all day efficiency.	
	Tests on single phase transformers – open circuit and short circuit tests –	
	Sumpner's test – separation of losses – parallel operation with equal	
	voltage ratios – auto transformer – equivalent circuit – comparison with	
	two winding transformers.	
UNIT - 5	3-Phase Transformer:	
	Polyphase connections- Y/Y, Y/ Δ , Δ /Y, Δ / Δ and open Δ - third harmonics	
	in phase voltages – three winding transformers- transients in switching –off	
	load and on load tap changers- Scott connection.	
	Total	

Text Books:

- 1. Electrical Machines by P.S. Bhimbra, Khanna Publishers, 7th edition, 2011.
- 2. Electric Machinery by A.E.Fitzgerald, Charles kingsley, Stephen D.Umans, TMH, 6th edition, 2003.

Reference Books:

- 1. Electrical Machines by D. P.Kothari, I .J .Nagarth, McGraw Hill Publications, 4th edition, 2010.
- 2. Electrical Machines by R.K.Rajput, Lakshmi publications, 5th edition.
- 3. Electrical Machinery by Abijith Chakrabarthi and SudhiptaDebnath, McGraw Hill, 1st edition.
- 4. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education, 4th edition, 2010.
- 5. Electric Machines by Mulukutla S.Sarma & Mukeshk. Pathak, CENGAGE Learning, 1st edition, 2008.
- Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria & Sons, 1st edition, 2009.

II B.Tech I Semester

COURSE CODE – R2011XXYY	ELECTRO MAGNETIC FIELDS	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
Due ve cuisite.				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Compute electric fields and potentials using Guass law or solve Laplace's	
	or Possion's equations for various electric charge distributions.	
CO2	Calculate the capacitance and energy stored in dielectrics.	
CO3	Calculate the magnetic field intensity due to current carrying conductor	
	and understanding the application of Ampere's law, Maxwell's second and	
	third law.	
CO4	Estimate self and mutual inductances and the energy stored in the magnetic	
	field.	
CO5	Understand the concepts of displacement current and Poynting theorem	
	and Poynting vector.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	1	2	1	1	2	2	2	3	2	2
CO2	2	2	1	1	1	1	1	1	1	2	1	2	2	2	2
CO3	3	2	2	2	2	1	1	1	1	1	2	2	2	2	2
CO4	2	2	1	1	1	1	2	1	1	1	2	2	2	2	2
CO5	2	2	1	1	1	1	1	1	1	1	1	2	2	2	2

UNIT	CONTENTS	Contact					
		Hours					
UNIT - 1	Electrostatics:						
	Coulomb's Law – Electric Field Intensity (EFI) – EFI due to a line and a						
	surface charge, work done in moving a point charge in an electrostatic						
	field, electric potential – potential gradient, Gauss's law – Maxwell's first						
	law $(div(D)=\rho_v)$, Laplace's and Poison's equations and solution of						
	Laplace's equation in one variable.						
UNIT - 2	Conductors – Dielectrics and Capacitance:						
	Electric dipole – dipole moment – potential and EFI due to an electric						
	dipole, Torque on an Electric dipole in an electric field, conductors and						
	Insulators – their behaviour in electric field.						
	Polarization, boundary conditions between conductor to dielectric,						

	dielectric to dielectric and conductor to free space. Capacitance of parallel	
	plates, spherical dielectrics, energy stored and energy density in a static	
	electric field, current density, conduction and convection current densities,	
	Ohm's law in point form – equation of continuity.	
UNIT - 3	Magneto statics, Ampere's Law and Force in magnetic fields:	
	Biot-Savart's law and its applications viz. Straight current carrying	
	filament, circular, square, rectangle and solenoid current carrying wire -	
	Maxwell's second Equationb(div(B)=0), Ampere's circuital law and its	
	applications viz. MFI due to an infinite sheet, long filament, solenoid,	
	toroidal current carrying conductor, point form of Ampere's circuital law,	
	Maxwell's third equation(Curl (H)=J)	
	Magnetic force, moving charges in a magnetic field – Lorentz force	
	equation, force on a current element in a magnetic field, force on a straight	
	and a long current carrying conductor in a magnetic field, force between	
	two straight long and parallel current carrying conductors.	
UNIT - 4	Self and mutual inductance:	
	Self and mutual inductance – determination of self-inductance of a	
	solenoid and toroid and mutual inductance between a straight long wire	
	and a square loop wire in the same plane – energy stored and density in a	
	magnetic field.	
UNIT - 5	Time Varying Fields:	
	Faraday's laws of electromagnetic induction – integral and point	
	forms, Maxwell's fourth equation(Curl(E)= $-\partial B/\partial t$), statically and	
	dynamically induced EMF – modification of Maxwell's equations for time	
	varying fields, displacement current, Poynting theorem and Poynting	
	vector.	
	Total	1

Text Books:

- 1. "Engineering Electromagnetics" by William H. Hayt & John. A. Buck Mc. Graw-Hill, 7th Editon.2006.
- 2. "Principles of Electro Magnetics" by Sadiku, Oxford Publications, 6th edition, 2015.

Reference Books:

- 1. Introduction to Electro Dynamics by D J Griffiths, Prentice-Hall of India Pvt. Ltd, 2nd edition
- 2. Electromagnetic Field Theory by Yaduvir Singh, Pearson India, 1st edition, 2011.
- 3. Fundamentals of Engineering Electromagnetics by Sunil Bhooshan, Oxford University Press, 2012.
- 4. Electromagnetics by Joseph A. Edminister, Schaum's Outline, 4th Edition, 2014.

II B.Tech I Semester

COURSE CODE – R2011XXYY	DC MACHINES AND TRANSFORMERS LAB	CATEGORY PCC	L-T-P 0-0-3	CREDITS 1.5
n ••4				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Analyze the performance of DC motor and generator by conducting	4
	different tests	
CO2	Understand the characteristics of DC generator and demonstrate the speed	3
	control of motors	
CO3	Determine the efficiency and regulation of transformers and assess their	4
	performance by conducting different tests	
CO4	Produce 2-Ø supply from 3-Ø supply using Scott connection and	3
	understand parallel operation of transformers	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	-	-	-	-	2	1	1	2	3	3	2
CO2	3	2	2	2	-	-	-	-	2	1	1	2	3	2	2
CO3	3	3	2	2	-	-	-	-	2	1	1	2	3	3	2
CO4	3	2	2	1	-	-	-	-	2	1	1	1	2	2	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

Exp. No	CONTENTS (Any 10 of the following experiments are to be conducted)	Contact Hours
1.	Determination of critical field resistance and critical speed of DC shunt generator by using Magnetization characteristics	
2.	Predetermination of efficiency of DC Machine by conducting Swinburne's	
	test	
3.	Performance characteristics of a DC shunt motor by conducting Brake test.	
4.	Predetermination of efficiency of two DC shunt machines by conducting	
	Hopkinson's test	
5.	Speed control of DC shunt motor by Field and armature Control methods	
6.	Determination of constant losses of DC shunt motor by conducting	
	Retardation test	
7.	Separation of losses (Eddy current and Hysteresis) in a DC shunt motor.	
8.	Predetermination of efficiency, regulation and to obtain the parameters of the	

	equivalent circuit of a single-phase transformer by conducting OC & SC tests.	
9.	Predetermination of efficiency, regulation and to obtain the parameters of the	
	equivalent circuit of a single-phase transformer by conducting Sumpner's test.	
10.	Conversion of three-phase to two-phase supply by using Scott connection of	
	transformers	
11.	Parallel operation of Single-phase Transformers under no-load and load	
	conditions	
12.	Separation of core losses of a single-phase transformer	
13.	Heat run test on a bank of three single-phase Delta connected transformers	

II B.Tech I Semester

COURSE CODE – R2011XXYY	ELECTRICAL CIRCUITS LAB	CATEGORY PCC	L-T-P 0-0-3	CREDITS 1.5
D				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
CO1	Apply Thevenin's, Norton's, Thevenin's, superposition theorem, maximum power transfer, compensation, reciprocity and Millmann's Theorems to compare practical results obtained with theoretical calculations	3
CO2	Draw locus diagrams of RL, RC series circuits and examine series and parallel resonance	3
CO3	Determine self, mutual inductances and coefficient of coupling values, parameters of choke coil, Z, Y, Transmission and hybrid parameters	4
CO4	Calculate power consumed by balanced and unbalanced loads	3

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

1	. 0				1	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	-	-	-	2	1	1	2	3	2	2
CO2	3	3	2	2	1	-	-	-	2	1	1	2	3	2	2
CO3	3	2	2	2	1	-	-	-	2	1	1	2	3	2	2
CO4	3	2	2	1	1	-	-	-	2	1	1	1	2	2	1

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

Exp. No.	CONTENTS	Contact
	(Any 10 of the following experiments are to be conducted)	Hours
1.	Verification of Kirchhoff's circuit laws.	
2.	Verification of Superposition theorem	
3.	Verification of Thevenin's and Norton's Theorems	
4.	Verification of Maximum power transfer theorem	
5.	Verification of Compensation theorem	
6.	Verification of Reciprocity and Millmann's Theorems	
7.	Locus diagrams of R-L(L Variable) and R-C (C Variable) series circuits	
8.	Series and parallel resonance	
9.	Determination of self, mutual inductances and coefficient of coupling	
10.	Determination of Impedance (Z) and Admittance (Y) Parameters for a two	
	port network	
11.	Determination of Transmission and Hybrid parameters	

12.	Determination of Parameters of a choke coil.	
13.	Determination of cold and hot resistance of an electric lamp.	
14.	Measurement of 3-phase power by two wattmeter method for unbalanced loads	

II B.Tech I Semester

COURSE CODE – R2011XXYY	ELECTRONIC DEVICES AND CIRCUITS LAB	CATEGORY PCC	L-T-P 0-0-3	CREDITS 1.5

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Study the characteristics of electronic components and measuring instruments.	
CO2	Understand the characteristics of PN, Zener diode, design rectifiers with and without filters	
CO3	Understand the characteristics of BJT, FET, MOSFET, SCR, UJT	
CO4	Understand the biasing of transistors	
CO5	Understand the frequency response of amplifiers, measure frequency, phase of signals.	
μ'n		

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	3	3	1					1	2	2	3	3
CO2	1	3	2	3	3	2					1	2	2	2	2
CO3	1	3	3	3	2	1					1	1	3	2	3
CO4	1	2	2	3	2	2					1	1	2	2	3
CO5	1	2	2	3	2	2					1	2	3	2	3

Exp. No	CONTENTS								
	Electronic Workshop Practice:								
1.	Identification, Specifications, Testing of R, L, C Components (Colour								
	Codes), Potentiometers, Colls, Gang Condensers, Relays, Bread Boards.								
2	Identification, Specifications and Testing of active devices, Diodes, BJTs,								
2.	JFETs, LEDs, LCDs, SCR, UJT.								
3.	Soldering Practice- Simple circuits using active and passive components.								
	Study and operation of Ammeters, Voltmeters, Transformers, Analog and								
4.	Digital Multimeter, Function Generator, Regulated Power Supply and								
	CRO.								

	List of Experiments:
	Any Ten of the following Experiments are to be conducted
	P-N Junction Diode Characteristics
1.	Part A: Germanium Diode (Forward bias& Reverse bias)
	Part B: Silicon Diode (Forward Bias only)
	Zener Diode Characteristics
2.	Part A: V-I Characteristics
	Part B: Zener Diode as Voltage Regulator
	Rectifiers (without and with c-filter)
3.	Part A: Half-wave Rectifier
	Part B: Full-wave Rectifier
	BJT Characteristics(CE Configuration)
4.	Part A: Input Characteristics
	Part B: Output Characteristics
	FET Characteristics(CS Configuration)
5.	Part A: Drain Characteristics
	Part B: Transfer Characteristics
6.	SCR Characteristics
7.	UJT Characteristics
8.	Transistor Biasing
9.	CRO Operation and its Measurements
10.	BJT-CE Amplifier
11.	Emitter Follower-CC Amplifier
12.	FET-CS Amplifier

Note: The students are required to perform the experiment to obtain the V-I characteristics and to determine the relevant parameters from the obtained graphs.

Equipment required:

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscilloscopes
- 3. Analog/Digital Function Generators
- 4. Digital Multi-meters
- 5. Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analog or Digital)
- 8. Voltmeters (Analog or Digital)
- 9. Active & Passive Electronic Components

II B.Tech I Semester

COURSE CODE – R2011XXYY	SKILL ORIENTED COURSE DESIGN OF ELECTRICAL CIRCUITS USING ENGINEERING SOFTWARE TOOLS	CATEGORY SC	L-T-P 0-0-4	CREDITS 2
-------------------------------	---	----------------	----------------	-----------

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	write the MATLAB programs to simulate the electrical circuit problems	
CO2	simulate various circuits for electrical parameters	
CO3	simulate various wave form for determination of wave form parameters	
CO4	simulate RLC series and parallel resonance circuits for resonant	
	parameters	
CO5	simulate magnetic circuits for determination of self and mutual	
	inductances	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															

S.No	CONTENTS	Contact
		Hours
	List of Experiments:	
	Any TEN of the following Experiments are to be conducted	
1.	Generation of various signals and sequences (Periodic and Aperiodic),	
	such as unit Impulse, Step, Square, Saw tooth, Triangular, Sinusoidal,	
	Ramp.	
2.	Operations on signals and sequences such as Addition, Multiplication,	
	Scaling, Shifting, Folding, Computation of Energy, and Average Power	
3.	Verification of Kirchhoff's current law and voltage law using simulation	
	tools.	
4.	Verification of mesh analysis using simulation tools.	

5.	Verification of nodal analysis using simulation tools.	
6.	Determination of average value, rms value, form factor, peak factor of	
	sinusoidal wave, square wave using simulation tools.	
7.	Verification of super position theorem using simulation tools.	
8.	Verification of reciprocity theorem using simulation tools.	
9.	Verification of maximum power transfer theorem using simulation tools.	
10.	Verification of Thevenin's theorem using simulation tools.	
11.	Verification of Norton's theorem using simulation tools.	
12.	Verification of compensation theorem using simulation tools.	
13.	Verification of Milliman's theorem using simulation tools.	
14.	Verification of series resonance using simulation tools.	
15.	Verification of parallel resonance using simulation tools.	
16.	Verification of self inductance and mutual inductance by using simulation	
	tools	

II B.Tech I Semester

R2011XXYY	COURSE CODE – R2011XXYY	ESSENCE OF INDIAN TRADITION KNOWLEDGE	CATEGORY MC	L-T-P 2-0-0	CREDITS 0
-----------	-------------------------------	--	----------------	----------------	--------------

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															
(7)	0111					~				**					

(Please fill the above with Levels of Correlation, viz., L, M, H)

UNIT	CONTENTS	Contact Hours
N	ote: Collect the syllabus from concerned BO	S
	Total	
Text Book	S:	

1.

Reference Books:

1.

II B.Tech II Semester

COURSE CODE – R2011XXYY	PYTHON PROGRAMMING	CATEGORY ESC	L-T-P 3-0-0	CREDITS 3

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Develop essential programming skills in computer programming concepts	
	like data types, containers	
CO2	Apply the basics of programming in the Python language Solve coding	
	tasks related conditional execution, loops	
CO3	Know list and to design various functions and modules	
CO4	Solve coding tasks related to the file operations, fundamental notions and	
	techniques used in object- oriented programming	
CO5	Identify errors and exceptions, develop GUI based programs	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2	2	2								2	1	1
CO2			2	3	3								2	1	1
CO3			1	3	3								2	1	1
CO4	1	2	2	2	2								2	1	1
CO5		1	2	2	3								2	1	1

UNIT	CONTENTS					
		Hours				
UNIT - 1	Introduction:					
	Introduction to Python, Program Development Cycle, Input, Processing,					
	and Output, Displaying Output with the Print Function, Comments,					
	Variables, Reading Input from the Keyboard, Performing Calculations,					
	Operators. Type conversions, Expressions, More about Data Output.					
	Data Types, and Expression: Strings Assignment, and Comment,					
	Numeric Data Types and Character Sets, Using functions and Modules.					
	Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements,					
	Nested Decision Structures, Comparing Strings, Logical Operators,					
	Boolean Variables. Repetition Structures: Introduction, while loop, for					
	loop, Calculating a Running Total, Input Validation Loops, Nested					
	Loops.					

UNIT - 2	Control Statement:						
	Definite iteration for Loop Formatting Text for output, Selection if and if						
	else Statement Conditional Iteration The While Loop						
	Strings and Text Files: Accessing Character and Substring in Strings,						
	Data Encryption, Strings and Number Systems, String Methods Text						
	Files.						
UNIT - 3	List and Dictionaries:						
	Lists, Defining Simple Functions, Dictionaries						
	Design with Function: Functions as Abstraction Mechanisms, Problem						
	Solving with Top Down Design, Design with Recursive Functions,						
	Case Study Gathering Information from a File System, Managing a						
	Program's Namespace, Higher Order Function.						
	Modules: Modules, Standard Modules, Packages.						
UNIT - 4	File Operations:						
	Reading config files in python, Writing log files in python,						
	Understanding read functions, read(), readline() and readlines(),						
	Understanding write functions, write() and writelines(), Manipulating file						
	pointer using seek, Programming using file operations						
	Object Oriented Programming: Concept of class, object and instances,						
	Constructor, class attributes and destructors, Real time use of class in live						
	projects, Inheritance, overlapping and overloading operators, Adding and						
	retrieving dynamic attributes of classes, Programming using OOPs						
	support						
	Design with Classes: Objects and Classes, Data modeling Examples, Case						
	Study An ATM, Structuring Classes with Inheritance and Polymorphism						
UNII - 5	Errors and Exceptions:						
	Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions,						
	User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-						
	up Actions.						
	Graphical User Interfaces: The Behavior of Terminal Based Programs and						
	GUI -Based, Programs, Coding Simple GUI-Based Programs, Other Useful						
	GUI Resources.						
	Programming: Introduction to Programming Concepts with Scratch.						
	Total						

Text Books:

1. Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage, 2/e, 2011.

Reference Books:

- 1. Introduction to Python Programming, Gowrishankar S., VeenaA, CRC Press, 2nd Edition, 2019.
- 2. Introduction to Programming Using Python, Y. Daniel Liang, Pearson, 1st Edition, 2012.

e-Resources:

1. https://www.tutorialspoint.com/python3/python_tutorial.pdf

II B.Tech II Semester

COURSE CODE – R2011XXYY	DIGITAL ELECTRONICS	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
D				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Classify different number systems, generate various codes and use the	
	concept of Boolean algebra in minimization of switching functions.	
CO2	Use the concept of K-map/tabulation method in minimization of switching	
	functions and able to design the arithmetic combinational circuits.	
CO3	Design different types of data handling combinational circuits and PLDs	
CO4	Know the operation of various flip-flops and apply knowledge of flip-flops	
	in designing of registers and counters	
CO5	Reduce state tables, analyze synchronous sequential circuits and apply	
	different methods for the design of synchronous sequential circuits.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	1	2	-	-	-	-	-	-	2	3	1
CO2	3	2	3	2	1	3	-	-	-	-	-	-	2	3	1
CO3	3	2	3	2	1	3	-	-	-	-	-	2	2	3	1
CO4	3	2	3	2	1	3	-	-	-	-	-	3	2	3	1
CO5	3	2	3	2	1	3	-	-	-	-	-	2	2	3	1

(Please fill the above with Levels of Correlation, viz., L, M, H)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Review Of Number Systems & Codes	
	Representation of numbers of different radix, conversation from one radix to	
	another radix, r-1's compliments and r's compliments of signed	
	members.Gray code ,4 bit codes; BCD, Excess-3, 2421, 84-2-1 code etc., Error	
	detection & correction codes: parity checking, even parity, odd parity, Hamming	
	code.	
	Boolean theorems and logic operations	
	Boolean theorems, principle of complementation & duality, De-morgan	
	theorems. Logic operations ; Basic logic operations -NOT, OR, AND, Universal	
	Logic operations, EX-OR, EX-NOR operations. Standard SOP and POS Forms,	
	NAND-NAND and NOR-NOR realizations.	

UNIT - 2	Minimization Techniques	
	Minimization and realization of switching functions using Boolean theorems, K-	
	Map (up to 6 variables) and tabular method.	
	Combinational Logic Circuits Design	
	Design of Half adder, full adder, half subtractor, full subtractor, applications of	
	full adders; 4-bit adder-subtractor circuit, BCD adder circuit, Excess 3 adder	
	circuit and carry look-a-head adder circuit	
UNIT - 3	Combinational Logic Circuits Design Using MSI & LSI	
	Design of encoder, decoder, multiplexer and demultiplexers, Implementation of	
	higher order circuits using lower order circuits . Realization of Boolean functions	
	using decoders and multiplexers. Design of Priority encoder, 4-bit digital	
	comparator and seven segment decoder	
	INTRODUCTION OF PLD's	
	PLDs:PROM, PAL, PLA -Basics structures, realization of Boolean functions.	
UNIT - 4	Sequential Circuits I	
	Classification of sequential circuits (synchronous and asynchronous), operation	
	of NAND & NOR Latches and flip-flops; truth tables and excitation tables of RS	
	flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals.	
	Conversion from one flip-flop to another flip-flop. Design of ripple counters,	
	design of synchronous counters, Johnson counter, ring counter. Design of	
	registers - Buffer register, control buffer register, shift register, bi-directional	
	shift register, universal shift register.	
UNIT - 5	Sequential Circuits II	
	Finite state machine; state diagrams, state tables, reduction of state tables.	
	Analysis of clocked sequential circuits Mealy to Moore conversion and vice-	
	versa. Realization of sequence generator and sequence detector circuits.	
	Total	

Text Books:

- 1. Switching and finite automata theory Zvi.KOHAVI 3RD EDITION
- 2. Fundamentals of Logic Design by Charles H. Roth Jr, Jaico Publishers
- 3. Digital Design by Mano PHI.

- 1. Switching Theory and Logic Design by A. Anand Kumar
- 2. Switching Theory and Logic Design by Hill and Peterson Mc-Graw Hill TMH edition

II B.Tech II Semester

	COURSE CODE – R2011XXYY	POWER SYSTEMS - I	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
--	-------------------------------	-------------------	-----------------	----------------	--------------

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)#
CO1	Identify the different components of thermal power plants.	
CO2	Identify the different components of nuclear Power plants.	
CO3	Identify the different components of air and gas insulated substations.	
CO4	Identify single core and three core cables with different insulating materials.	
CO5	Analyse the different economic factors of power generation and tariffs.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	. 8				-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	3						1		1	2	3	3
CO2	2	1	1	3						1		1	2	3	3
CO3	2	3	2	2						1		1	2	3	3
CO4	2	2	2	3			2			1		1	2	3	3
CO5	2	2	2	2			2			1		1	2	3	3

(Please fill the above with Levels of Correlation, viz., L, M, H)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Hydroelectric Power Stations:	
	Selection of site, general layout of a hydroelectric power plant with brief	
	description of major components and principle of operation	
	Thermal Power Stations	
	Selection of site, general layout of a thermal power plant. Brief description	
	of components: boilers, super heaters, economizers and electrostatic	
	precipitators, steam turbines: impulse and reaction turbines, condensers,	
	feed water circuit, cooling towers and chimney.	
UNIT - 2	Nuclear Power Stations	
	Location of nuclear power plant, working principle, nuclear fission,	
	nuclear fuels, nuclear chain reaction, nuclear reactor components:	
	moderators, control rods, reflectors and coolants, types of nuclear reactors	

	and brief description of PWR, BWR and FBR. Radiation: radiation hazards	1
	and shielding, nuclear waste disposal.	1
UNIT - 3	Classification of Air and Gas Insulated substations	
	Air Insulated Substations - indoor & outdoor substations, substations	l
	layouts of 33/11 kV showing the location of all the substation equipment.	1
	Bus bar arrangements in the sub-stations: simple arrangements like single	l
	bus bar, sectionalized single bus bar, double bus bar with one and two	l
	circuit breakers, main and transfer bus bar system with relevant diagrams.	l
	Gas Insulated Substations (GIS) - advantages of gas insulated	l
	substations, constructional aspects of GIS, installation and maintenance of	l
	GIS, comparison of air insulated substations and gas insulated substations.	L
UNIT-4	Underground Cables	l
	Types of cables, construction, types of insulating materials, calculation of	l
	insulation resistance, stress in insulation and power factor of cable.	l
	Capacitance of single and 3-Core belted Cables. Grading of cables:	l
	capacitance grading and	l
	intersheath grading.	L
UNIT - 5	Economic Aspects of Power Generation & Tariff	l
	Economic Aspects – load curve, load duration and integrated load duration	l
	curves, discussion on economic aspects: connected load, maximum	l
	demand, demand factor, load factor, diversity factor, plant capacity factor	l
	and plant use factor, base and peak load plants.	l
	Tariff Methods- costs of generation and their division into fixed, semi-	l
	fixed and running costs, desirable characteristics of a tariff method, tariff	1
	methods: simple rate, flat rate, block-rate, two-part, three-part, and power	1
	factor tariff methods.	<u> </u>
	Total	L

Text Books:

- 1. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A. Chakrabarti, DhanpatRai& Co. Pvt. Ltd, 2016.
- 2. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa, New age International (P) Limited, Publishers, 3rd edition.

Reference Books:

1. Elements of Electrical Power Station Design by M V Deshpande, PHI, New Delhi, 2009.

II B.Tech II Semester

COURSE CODE – R2011XXYY	INDUCTION AND SYNCHRONOUS MACHINES	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
T				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)#
CO1	Explain the operation and performance of three-phase induction motor.	2
CO2	Analyze the torque-speed relation, performance of induction motor and induction generator.	4
CO3	Illustrate the starting methods of three-phase induction motors and understand the working of single-phase induction motors	3
CO4	Analyze the performance of Synchronous generators and motors	4
CO5	Explain the principle of working and methods of starting synchronous motor. Illustrate the usage of synchronous motor for power factor correction	3

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	1	-	-	-	-	1	2	2	2	2
CO2	3	2	2	2	-	1	-	-	-	-	1	3	3	3	2
CO3	3	3	2	2	-	1	-	-	-	-	1	3	3	3	2
CO4	3	3	2	2	-	1	-	-	-	-	1	3	3	2	2
CO5	3	3	2	2	-	1	-	-	-	-	1	3	3	3	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	3-phase induction motors	
	Construction details of squirrel cage and slip ring induction motors –	
	production of rotating magnetic field – principle of operation –	
	Equivalent circuitphasor diagram- slip speed-rotor emf and rotor	
	frequency – rotor current and pf at standstill and during running	
	conditions – rotor power input, rotor copper loss and mechanical	
	power developed and their interrelationship.	
UNIT - 2	Characteristics and testing methods of induction motors	
	Torque equation – expressions for maximum torque and starting torque –	
	torque slip characteristic – double cage and deep bar rotors – crawling and	

	cogging – speed control of induction motor with V/f control method – no	
	load and blocked rotor tests - circle diagram for predetermination of	
	performance – induction generator operation (Qualitative treatment only)	
UNIT - 3	Starting methods of 3-phase induction motors	
	Methods of starting of three phase Induction motors: DOL, Auto	
	transformer, Star-Delta and rotor resistance methods.	
	Single phase induction motors:	
	Constructional features- equivalent circuit- problem of starting-double	
	revolving field theory- Methods of starting. AC series motors.	
UNIT - 4	Construction, operation, voltage regulation and parallel operation of	
	synchronous generator:	
	Constructional features of non-salient and salient pole machines -types of	
	armature windings - distribution, pitch and winding factors - E.M.F	
	equation -improvements of waveform and armature reaction - phasor	
	diagrams - voltage regulation by synchronous impedance method – MMF	
	method and Potier triangle method- two reaction analysis of salient pole	
	machines and phasor diagram.	
	Parallel operation with infinite bus and other alternators – synchronizing	
	power – load sharing – control of real and reactive power – numerical	
	problems.	
UNIT - 5	Synchronous motor – operation, starting and performance	
	Synchronous motor principle and theory of operation – phasor diagram –	
	starting torque – variation of current and power factor with excitation –	
	capability curves - synchronous condenser - mathematical analysis for	
	power developed – hunting and its suppression – methods of starting –	
	applications.	
	Total	

Text Books:

- 1. Electrical Machines by P.S. Bhimbra, Khanna Publishers
- 2. Electric Machinery by A.E.Fitzgerald, Charles Kingsley, Stephen D.Umans, TMH **Reference Books:**
- 1. Performance and design of AC machines M.G. Say
- 2. Alternating Current Machines by A.F.Puchstein, T.C. Lloyd, A.G. Conrad, ASIA Publishing House
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education, 2010.
- 4. Electrical Machines by R.K.Rajput, Lakshmi publications, 5th edition.

II B.Tech II Semester

|--|

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Learner equipped with the knowledge of demand, supply analysis and	
	estimating Demand elasticity, demand forecasting and Law of Supply.	
CO2	Learner is able to knowledge of understanding the production, Production	
	function, Input-Output-cost relationships and estimation of the lease cost	
	combination of inputs.	
CO3	One is also ready to understand the nature of different markets and price-	
	output determination under various Market conditions have a knowledge	
	of Pricing Methods and to know the various Business Organizations and	
	Business Cycles.	
CO4	Learner is able to prepare financial statements and the usage of various	
	Accounting tools for analysis.	
CO5	Student equipped to evaluate the various investment project proposals with	
	the help of Capital Budgeting techniques for decision making.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

						_									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			1			2	3						3		
CO2	2		3	3	2								2	1	
CO3		3	2	1	2								1		
CO4		2		2		3							3	1	
CO5		3	2	1	2								2	3	
				_		~									

(Please fill the above with Levels of Correlation, viz., L, M, H)

UNIT	CONTENTS	Contact
		Hours
T T 1 / T		

Unit-I

Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics –Scope of Managerial Economics and its relationship with other subjects –Concept of Demand, Types of Demand, Determinants of Demand - Demand schedule, Demand curve, Law of Demand and its limitations- Elasticity of Demand, Types of Elasticity of Demand and Measurement- Demand forecasting and Methods of forecasting, Concept of Supply and Law of Supply.

Unit – II:

Theories of Production and Cost Analyses:

Total

UNIVERSITY COLLEGE OF ENGINEERING KAKINADA (AUTONOMOUS) :: JNTUK,KAKINADA DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Theories of Production function- Law of Variable proportions-Isoquants and Isocosts and choice of least cost factor combination-Concepts of Returns to scale and Economies of scale-Different cost concepts: opportunity costs, explicit and implicit costs-Fixed costs, Variable Costs and Total costs –Cost –Volume-Profit analysis-Determination of Breakeven point(problems)-Managerial significance and limitations of Breakeven point.

Unit – III:

Introduction to Markets, Theories of the Firm & Pricing Policies:

Market Structures: Perfect Competition, Monopoly, Monopolistic competition and Oligopoly – Features – Price and Output Determination – Managerial Theories of firm: Marris and Williamson's models – other Methods of Pricing: Average cost pricing, Limit Pricing, Market Skimming Pricing, Internet Pricing: (Flat Rate Pricing, Usage sensitive pricing) and Priority Pricing, Business Cycles : Meaning and Features – Phases of a Business Cycle. Features and Evaluation of Sole Trader, Partnership, Joint Stock Company – State/Public Enterprises and their forms.

Unit – IV:

Introduction to Accounting & Financing Analysis:

Introduction to Double Entry System, Journal, Ledger, Trail Balance and Preparation of Final Accounts with adjustments – Preparation of Financial Statements-Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow and cash flow analysis (Problems)

Unit – V:

Capital and Capital Budgeting: Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Time value of money- Methods of appraising Project profitability: Traditional Methods(pay back period, accounting rate of return) and modern methods(Discounted cash flow method, Net Present Value method, Internal Rate of Return Method and Profitability Index)

Text Books:

1.

- 1. 1. Varshney R.L, K.L Maheswari, Managerial Economics, S. Chand & Company Ltd,
- 2. JL Pappas and EF Brigham, Managerial Economics, Holt, R & W; New edition edition
- 3. N.P Srinivasn and M. Sakthivel Murugan, Accounting for Management, S. Chand & Company Ltd,
- 4. Maheswari S.N, AnIntroduction to Accountancy, Vikas Publishing House Pvt Ltd
- 5. I.M Pandey, Financial Management, Vikas Publishing House Pvt Ltd
- 6. V. Maheswari, Managerial Economics, S. Chand & Company Ltd,

II B.Tech II Semester

COURSE CODE – R2011XXYY	PYTHON PROGRAMMING LAB	CATEGORY ESC	L-T-P 0-0-3	CREDITS 1.5
T				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Write, Test and Debug Python Programs	
CO2	Use Conditionals and Loops for Python Programs	
CO3	Use functions and represent Compound data using Lists, Tuples	
	and Dictionaries Use various applications using python	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	2	2								2	2	2
CO2	2	2	2	3	3								2	2	2
CO3	2	2	2	3	3								2	2	1

(Please fill the above with Levels of Correlation, viz., L, M, H)

S.No	CONTENTS	Contact Hours
1.	Write a program that asks the user for a weight in kilograms and converts it to pounds. There are 2.2 pounds in a kilogram.	
2.	Write a program that asks the user to enter three numbers (use three separate input statements). Create variables called total and average that hold the sum and average of the three numbers and print out the values of total and average.	
3.	Write a program that uses a <i>for</i> loop to print the numbers 8, 11, 14, 17, 20, , 83, 86,89.	
4.	Writeaprogramthataskstheuserfortheirnameandhowmanytimestoprintit. The program should print out the user's name the specified number of times.	
5.	Use a <i>for</i> loop to print a triangle like the one below. Allow the user to specify how high the triangle should be. * ** *** *** ***	
6.	Generate a random number between 1 and 10. Ask the user to guess the number and print a message based on whether they get it right or not.	

7.	Write a program that asks the user for two numbers and prints Close if the	
	numbers are within .001 of each other and Not close otherwise.	
8.	Write a program that asks the user to enter a word and prints out whether	
	that word contains any vowels.	
9.	Write a program that asks the user to enter two strings of the same length.	
	The program should then check to see if the strings are of the same length.	
	If they are not, the program should print an appropriate message and exit.	
	If they are of the same length, the program should alternate the characters	
	of the two strings. For example, if the user enters <i>abcde</i> and <i>ABCDE</i> the	
10	program should print out <i>AaBbCcDdEe</i> .	
10.	Write a program that asks the user for a large integer and inserts commas	
	into it according to the standard American convention for commas in large	
	numbers. For instance, if the user enters 1000000, the output should	
	be1,000,000.	
11.	In algebraic expressions, the symbol for multiplication is often left out, as	
	in $3x+4y$ or $3(x+5)$. Computers prefer those expressions to include the	
	multiplication symbol, like $3*x+4*y$ or $3*(x+5)$. Write a program that asks	
	the user for an algebraic expression and then inserts multiplication symbols	
	where appropriate.	
12.	Write a program that generates a list of 20 random numbers between 1 and	
	100.	
	(a) Print the list.	
	(b) Print the average of the elements in the list.	
	(c) Print the largest and smallest values in the list.	
	(d) Print the second largest and second smallest entries in the list	
10	(e) Print how many even numbers are in the list.	
13.	Write a program that asks the user for an integer and creates a list that	
1.4	consists of the factors of that integer.	
14.	Write a program that generates 100 random integers that are either 0 or 1.	
	Then find the longest run of zeros, the largest number of zeros in a row.	
15	For instance, the longest run of zeros in $[1,0,1,1,0,0,0,0,1,0,0]$ is 4.	
15.	write a program that removes any repeated items from a list so that each	
	the head model is a most once. For instance, the list $[1,1,2,3,4,3,0,0]$ would head model $[1,2,2,4,0]$	
16	Write a program that acks the user to enter a length in fact. The program	
10.	should then give the user the option to convert from feet into inches	
	vards miles millimeters centimeters meters or kilometers Say if the	
	user enters a 1 then the program converts to inches if they enter a 2 then	
	the program converts to vards etc. While this can be done with if	
	statements, it is much shorter with lists and it is also easier to add new	

17	conversions if you use lists.	
17.	Write a function called <i>sum_digits</i> that is given an integer num and	
10	returns the sum of the digits of num.	
18.	Write a function called <i>first_diff</i> that is given two strings and returns the	
	first location in which the strings differ. If the strings are identical, it	
	should return-1.	
19.	Write a function called <i>number_of_factors</i> that takes an integer and	
	returns how many factors the number has.	
20.	Write a function called <i>is_sorted</i> that is given a list and returns True if the	
	list is sorted and False otherwise.	
21.	Write a function called root that is given a number x and an integer n and	
	returns $x^{1/n}$. In the function definition, set the default value of n to2.	
22.	Write a function called primes that is given a number n and returns a list	
	of the first n primes. Let the default value of n be100.	
23.	Write a function called merge that takes two already sorted lists of	
	possibly different lengths, and merges them into a single sorted list.	
	(a)Do this using the sort method. (b) Do this without using the sort method	
24.	Write a program that asks the user for a word and finds all the smaller	
	words that can be made from the letters of that word. The number of	
	occurrences of a letter in a smaller word can't exceed the number of	
	occurrences of the letter in the user's word.	
25.	Write a program that reads a file consisting of email addresses, each on its	
	own line. Your program should print out a string consisting of those email	
	addresses separated by semicolons.	
26.	Write a program that reads a list of temperatures from a file called	
	temps.txt, converts those temperatures to Fahrenheit, and writes the results	
	to a file called ftemps.txt.	
27.	Write a class called Product. The class should have fields called name,	
	amount, and holding the product's name, the number of items of that	
	product in stock, and the regular price of the product. There should be a	
	method get_price that receives the number of items to be bought and	
	returns a the cost of buying that many items, where the regular price is	
	charged for orders of less than 10 items, a 10% discount is applied for	
	orders of between 10 and 99 items, and a 20% discount is applied for	
	orders of 100 or more items. There should also be a method called	
	make_purchase that receives the number of items to be bought and	
	decreases amount by that much.	
28.	Write a class called Time whose only field is a time in seconds. It should	
	have a method called <i>convert_to_minutes</i> that returns a string of minutes	
	and seconds formatted as in the following example: if seconds is 230, the	
	method should return '5:50'. It should also have a method called	

	convert_to_hours that returns a string of hours, minutes, and seconds	
	formatted analogously to the previous method.	
29.	Write a class called Converter. The user will pass a length and a unit when declaring an object from <u>the</u> class for example, c = Converter(9, inches'). The possible units are inches, feet, yards, miles, kilometers, meters, centimeters, and millimeters. For each of these units there should be a method that returns the length converted into those units. For example, using the Converter object created above, the user could call c. feet() and should get 0.75 as the result.	
30.	Write a Python class to implement $pow(x,n)$.	
31.	Write a Python class to reverse a string word byword.	
32.	Write a program that opens a file dialog that allows you to select a text file.	
	The program then displays the contents of the file in a textbox.	
33.	Write a program to demonstrate Try/except/else.	
34.	Write a program to demonstrate try/finally and with/as.	

II B.Tech II Semester

COURSE CODE – R2011XXYY	INDUCTION AND SYNCHRONOUS MACHINES LAB	CATEGORY PCC	L-T-P 0-0-3	CREDITS 1.5
D				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)#
CO1	Analyze the performance of three-phase Induction motor by conducting different tests	4
CO2	Determine the regulation of three–phase alternator by various methods, find X_d / X_q ratio of alternator and asses the performance of three–phase synchronous motor.	4
CO3	Demonstrate the power factor improvement methods of single-phase induction motor and asses its performance	3

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	-	1	-	-	2	1	1	2	3	3	2
CO2	3	3	2	2	-	1	-	-	2	1	1	2	3	3	2
CO3	3	2	2	2	-	1	-	-	2	1	1	2	3	2	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

Any 10 of the following experiments are to be conducted:

Exp. No.	CONTENTS									
		Hours								
1	Performance characteristics of a three-phase Induction Motor by									
	conducting Brake test									
2	Determination of equivalent circuit parameters, efficiency and regulation									
	of a three phase Induction motor by conducting No-load & Blocked rotor									
	tests									
3	Determination of Regulation of a three-phase alternator by using									
	synchronous impedance & m.m.f. methods									
4	Determination of Regulation of a three-phase alternator by using Potier									
	triangle method									
5	Determination of V and Inverted V curves of a three phase synchronous									
	motor.									
6	Determination of X _d and X _q of a salient pole synchronous machine									
7	Speed control of three phase induction motor by V/f method.									
8	Determination of equivalent circuit parameters of single phase induction									

	motor	
9	Determination of efficiency of three-phase alternator by loading with three	
	phase induction motor.	
10	Power factor improvement of single-phase induction motor by using	
	capacitors.	
11	Parallel operation of three-phase alternator under no-load and load	
	conditions	
12	Determination of efficiency of a single-phase AC series Motor by	
	conducting Brake test.	
13	Starting of single-phase Induction motor by using capacitor start and	
	capacitor start run methods.	
14	Determination of efficiency of a single-phase Induction Motor by	
	conducting Brake test.	

II B.Tech II Semester

COURSE CODE – R2011XXYY	DIGITAL ELECTRONICS LAB	CATEGORY PCC	L-T-P 0-0-3	CREDITS 1.5
D				

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)#
CO1	Verify the basic operation of logic gates and design the combinational	
	circuits.	
CO2	Design the arithmetic and data handling combinational circuits	
CO3	Analyse basic operation of filp-flops and verify the functional tables.	
CO4	Design the ripple and synchronous counters.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3	3	2	-	-	3	2	1	-	2	3	2
CO2	3	2	2	3	3	2	-	-	3	2	1	-	2	3	2
CO3	3	2	2	3	3	2	-	-	3	2	1	-	2	3	2
CO4	3	2	2	3	3	2	-	-	3	2	1	-	2	3	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

S.No	CONTENTS	Contact
	List of Experiments:	Hours
	Any TEN of the following Experiments are to be conducted	
1.	Verification of truth tables of Logic gates: Two input (i) OR (ii) AND (iii)	
	NOR (iv) NAND (v) Exclusive OR (vi) Exclusive NOR	
2.	Design a simple combinational circuit and obtain minimal SOP expression	
	and verify the truth table using Digital Trainer Kit	
3.	Verification of functional table of 3 to 8 line Decoder / De-multiplexer	
4.	4 variable logic function verification using 8 to 1 multiplexer.	
5.	Design full adder circuit and verify its functional table.	
6.	Design full Subtractor circuit and verify its functional table.	
7.	Verification of functional tables of Flip-Flops	
8.	Design a four bit ring counter using D Flip – Flops / JK Flip Flop and	
	verify output	
9.	Design a four bit Johnson's counter using D Flip-Flops / JK Flip Flops and	

	verify output	
10.	Draw the circuit diagram of MOD-8 ripple counter and construct a circuit	
	using T-Flip-Flops and Test it with a low frequency clock and Sketch the	
	output waveforms.	
11.	Design MOD – 10 ripple counter using T- Flip-Flop and verify the result and	
	Sketch the output waveforms	
12.	Design MOD – 8 synchronous counter using D Flip-Flop and verify the	
	result and Sketch the output waveforms.	

II B.Tech II Semester

COURSE CODE – R2011XXYY	SOFT SKILL COURSE- EMPLOYABILITY SKILLS	CATEGORY SC	L-T-P 2-0-0	CREDITS 2

Pre-requisite:

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Follow strategies in minimizing time consumption in problem solving Apply	K2
	shortcut methods to solve problems	
CO2	Confidently solve any mathematical problems and utilize these mathematical	K 2
	skills both in their professional as well as personal life.	
CO3	Analyze, summarize and present information in quantitative forms including	K4
	table, graphs and formulas	
CO4	Make presentations effectively with appropriate body language	K5
CO5	Understand the core competencies to succeed in professional and personal life	K6

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	-	-	-	-	-	-	1	-	-
CO2	2	3	2	2	2	1	-	-	-	-	-	-	1	-	-
CO3	2	3	2	2	2	1	-	-	-	-	-	-	1	-	-
CO4	1	1	1	2	2	1	1	2	3	3	2	2	1	-	1
CO5	1	1	1	2	2	1	1	2	3	3	2	2	1	-	1

(Please fill the above with Levels of Correlation, viz., L, M, H)

UNIT	CONTENTS	Contact Hours
UNIT - 1	Numerical ability 1:	
	Number system, HCF & LCM, Average, Simplification, Problems on	
	numbers	
	Numerical ability II:	
	Ratio & Proportion, Partnership, Percentages, Profit & Loss	
UNIT - 2	Arithmetical ability 1	
	Problems on ages, Time & Distance, Problems on boats & Steams, Problems	
	on Trains, Time & Work, Pipes & Cistern, Chain Rule.	
	Arithmetical ability II:	
	Allegation, Simple interest and compound interest, Races & Games of	
	skills, Calendar and Clock,	

UNIT - 3	Logical ability:	
	Permutations and Combination and Probability.	
	Mensuration:	
	Geometry, Areas, Volumes,	
	Data interpretation:	
	Tabulation, Bar graphs, Pie charts, line graphs	
UNIT - 4	Self-Management Skills	
	Anger Management, Stress Management, Time Management, Six Thinking	
	Hats, Team Building, Leadership Qualities	
	Etiquette	
	Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette	
UNIT - 5	Job-Oriented Skills -I	
	Group Discussion, Mock Group Discussions	
	Job-Oriented Skills –II	
	Resume Preparation, Interview Skills, Mock Interviews	
	Total	

Text Books:

- 1. R. S. Aggarwal "Quantitative Aptitude", Revised ed., S Chand publication, 2017 ISBN:8121924987
- 2. Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011.
- 3. Raman, Meenakshi & Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011.

Reference Books:

1. S.P. Dhanavel, English and Soft Skills, Orient Blackswan, 2010.

E-resources and other digital material:

- 1. https://blog.feedspot.com/aptitude_youtube_channels/
- 2. https://www.tutorialspoint.com/quantitative_aptitude/
- 3. https://www.careerbless.com/aptitude/qa/home.php
- 4. https://www.Indiabix.com
- 5. https://www.freshersworld.com

III B.Tech I Semester

COURSE	POWER SYSTEMS-II	CATEGORY	L-T-P	CREDITS
CODE –		PC	3-0-0	3
R2011XXYY				

Pre-requisite: Power Systems-I, Electromagnetic Fields.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Calculate parameters of transmission lines for different circuit configurations.	
CO2	Determine the performance of short, medium and long transmission lines.	
CO3	Analyse the effect of travelling waves on transmission lines.	
CO4	Analyse the various voltage control methods and effect of corona.	
CO5	Calculate sag/tension of transmission lines and performance of line insulators.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	1	2	-	-	-	-	-	-	1	3	1
CO2	3	2	3	2	1	3	-	-	-	-	-	2	1	3	1
CO3	3	2	3	2	1	2	-	-	-	-	-	3	1	3	2
CO4	3	2	3	2	1	3	-	-	-	-	-	4	1	3	2
CO5	3	2	3	2	1	3	-	-	-	-	-	-	1	3	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Transmission Line Parameters	
	Conductor materials – Types of conductors – Calculation of resistance for solid	
	conductors – Skin and Proximity effects – Calculation of inductance for Single-	
	phase and Three-phase– Single and double circuit lines– Concept of GMR and	
	GMD–Symmetrical and asymmetrical conductor configuration with and without	
	transposition–Bundled conductors – Calculation of capacitance for 2 wire and 3	
	wire systems - Effect of ground on capacitance - Capacitance calculations for	
	symmetrical and asymmetrical single and Three-phase-Single and double circuit	
	lines without and with Bundled conductors.	
UNIT - 2	Performance Analysis of Transmission Lines	
	Classification of Transmission Lines – Short, medium, long lines and their model	

	representation –Nominal-T, Nominal-Pie and A, B, C, D Constants for symmetrical and Asymmetrical Networks	
	Rigorous Solution for long line equations – Surge Impedance and Surge Impedance Loading (SIL) of Long Lines – Representation of Long lines – Equivalent T and Equivalent Pie network models - Mathematical Solutions to estimate regulation and efficiency of lines – Ferranti effect – Charging Current – Power flow through transmission lines.	
UNIT - 3	Power System Transients	
	Types of System Transients – Propagation of Surges – Attenuation–Distortion–	
	Reflection and Refraction Coefficients.	
	Termination of lines with different types of conditions - Open Circuited Line-	
	Short Circuited Line – T-Junction – Lumped Reactive Junctions.	
UNIT - 4	Voltage Control & Corona	
	Methods of Voltage Control - Sources & Sinks of reactive power - Shunt	
	Capacitors/ Reactors and Series Capacitors - Tap Changing Transformers -	
	Synchronous Phase Modifiers.	
	Corona: Description of the phenomenon – Factors affecting corona – critical	
	voltages and power loss.	
UNIT - 5	Sag and Tension Calculations and Overhead Line Insulators:	
	Sag and Tension calculations with equal and unequal heights of towers–Effect of	
	Wind and Ice on weight of Conductor – Stringing chart and sag template and its	
	applications	
	Types of Insulators – String efficiency and Methods for improvement - Voltage	
	distribution–Calculation of string efficiency – Capacitance grading and Static	
	Shielding.	
	10tai	

Text Books:

- 1. Electrical Power Systems by C.L.Wadhwa, New Age International (P) Limited, 1998.
- 2. Power System Engineering by I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 3rd Edition.

- 1. Power system Analysis–by John J Grainger William D Stevenson, TMC Companies, 4thedition
- 2. Power System Analysis and Design by B.R.Gupta, Wheeler Publishing.
- 3. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar A.Chakrabarthy, DhanpatRai Co Pvt. Ltd.2016
- 4. Electrical Power Systems by P.S.R. Murthy, B.S. Publications, 2017.

III B.Tech I Semester

COURSE CODE – R2011XXYY	POWER ELECTRONICS	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
-------------------------------	-------------------	-----------------	----------------	--------------

Pre-requisite: Electrical Circuits, Power System-I, Basic concepts of Electronics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate the static and dynamic characteristics SCR, Power-MOSFET and Power-	
	IGBT.	
CO2	Analyse the operation of phase controlled rectifiers.	
CO3	Analyse the operation of three-phase full-wave converters, AC Voltage	
	Controllers and Cycloconverters.	
CO4	Examine the operation and design of different types of DC-DC converters.	
CO5	Analyse the operation of PWM inverters for voltage control and harmonic	
	mitigation.	
#Base	d on suggested Revised RTI	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	-	-	-	-	-	-	-	1	2	2
CO2	3	3	2	2	1	2	2	-	-	-	-	-	1	3	1
CO3	3	3	2	1	1	2	2	-	-	-	-	-	1	3	1
CO4	3	3	2	2	1	2	2	-	-	-	-	-	1	3	1
CO5	3	3	2	2	1	2	2	-	-	-	-	-	1	3	1

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Power Semi-Conductor Devices	
	Silicon controlled rectifier (SCR) - Two transistor analogy - Static and Dynamic	
	characteristics - Triggering methods (R, RC and UJT) - Snubber circuit design.	
	Static and Dynamic Characteristics of Power MOSFET and Power IGBT- Gate	
	Driver Circuits for Power MOSFET and IGBT - Numerical problems.	
UNIT - 2	Single-phase AC-DC Converters	
	Single-phase half-wave controlled rectifiers - R load and RL load with and	
	without freewheeling diode - Single-phase fully controlled mid-point and bridge	
	converter with R load, RL load and RLE load - Continuous and Discontinuous	
	conduction - Effect of source inductance in Single-phase fully controlled bridge	
	rectifier - Expression for output voltages - Single-phase Semi-Converter with R	

	load-RL load and RLE load - Continuous and Discontinuous conduction -	
	Harmonic Analysis - Single-phase Dual Converters - Numerical Problems.	
UNIT - 3	Three-phase AC-DC Converters & AC – AC Converters	
	Three-phase half-wave Rectifier with R and RL load - Three-phase fully	
	controlled rectifier with R and RL load - Three-phase semi converter with R and	
	RL load - Expression for Output Voltage - Harmonic Analysis - Three-phase	
	Dual Converters - Numerical Problems.	
	AC-AC power control by phase control with R and RL loads - Expression for rms	
	output voltage - Single-phase step down and step up bridge Cycloconverter -	
	Numerical Problems.	
UNIT - 4	DC–DC Converters	
	Operation of Basic Chopper - Classification - Control Techniques - steady state	
	time domain analysis of Basic Chopper - Analysis of Buck, Boost and Buck-	
	Boost converters in Continuous Conduction Mode (CCM) and Discontinuous	
	Conduction Modes (DCM) - Output voltage equations using volt-sec balance in	
	CCM & DCM – Expressions for output voltage ripple and inductor current	
	ripple- Numerical Problems.	
UNIT - 5	DC–AC Converters	
	Introduction - Single-phase half-bridge and full-bridge inverters with R and RL	
	loads - Phase Displacement Control - PWM with bipolar voltage switching,	
	PWM with unipolar voltage switching - Three-phase square wave inverters - 120°	
	conduction and 180 ^o conduction modes of operation - Sinusoidal Pulse Width	
	Modulation - Current Source Inverter (CSI) - Numerical Problems.	
	Total	

Text Books:

- 1. Power Electronics: Converters, Applications and Design by Ned Mohan, Tore M Undeland, William P Robbins, John Wiley & Sons.
- 2. Power Electronics: Circuits, Devices and Applications by M. H. Rashid, Prentice Hall of India, 2nd edition, 1998
- 3. Power Electronics: Essentials & Applications by L.Umanand, Wiley, Pvt. Limited, India, 2009.

- 1. Elements of Power Electronics-Philip T.Krein. Oxford University Press; Second edition
- 2. Power Electronics by P.S.Bhimbra, Khanna Publishers.
- 3. Thyristorised Power Controllers by G. K. Dubey, S. R. Doradla, A. Joshi and R. M. K.Sinha, New Age International (P) Limited Publishers, 1996.
- 4. Power Electronics: by Daniel W.Hart, Mc Graw Hill.

III B.Tech I Semester

COURSE CODE – R2011XXYY	CONTROL SYSTEMS	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
-------------------------------	-----------------	-----------------	----------------	--------------

Pre-requisite: Mathematics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Derive the transfer function of physical systems and determine overall transfer	2
	function using block diagram algebra and signal flow graphs.	
CO2	Obtain the time response of first and specifications of second order systems and	3
	determine error constants. Analyze the absolute and relative stability of LTI	
	systems using Routh's stability criterion and root locus method.	
CO3	Analyze the stability of LTI systems using frequency response methods.	4
CO4	Design Lag, Lead, Lag-Lead compensators to improve system performance using	5
	Bode diagrams	
CO5	Apply state space analysis concepts to represent physical systems as state models,	3
	derive transfer function and determine the response. Understand the concepts of	
	controllability and observability	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	0				-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	2	-	-	-	-	-	-	1	2	2	2	2
CO2	3	3	2	2	1	-	-	-	-	-	1	3	3	2	2
CO3	3	3	3	3	1	-	-	-	-	-	1	3	3	3	2
CO4	3	3	3	3	1	-	-	-	-	-	1	3	3	3	2
CO5	2	2	2	2	1	-	-	-	-	-	1	3	2	2	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Mathematical Modelling Of Control Systems Classification of control systems - open loop and closed loop control systems and their differences - Feedback characteristics - transfer function of linear system, differential equations of electrical networks- translational and rotational mechanical systems - transfer function of Armature voltage controlled DC servo motor - block diagram algebra – representation by signal flow graph – reduction using Mason's gain formula	
	and the second	
UNIT - 2	Time Response Analysis	

	Standard test signals - time response of first and second order systems - time							
	domain specifications - steady state errors and error constants - effects of							
	proportional (P) - proportional integral (PI) - proportional derivative (PD)							
	proportional integral derivative (PID) systems.							
	Stability And Root Locus Technique							
	The concept of stability – Routh's stability criterion – limitations of Routh's							
	stability, root locus concept - construction of root loci (simple problems) - Effect							
	of addition of Poles and Zeros to the transfer function.							
UNIT - 3	Frequency Response Analysis							
	Introduction to frequency domain specifications - Bode diagrams - transfer							
	function from the Bode diagram –Polar plots, Nyquist stability criterion- stability							
	analysis using Bode plots (phase margin and gain margin).							
UNIT - 4	Classical Control Design Techniques							
	Lag, lead, lag-lead compensators - physical realisation - design of compensators							
	using Bode plots.							
UNIT - 5	State Space Analysis Of LTI Systems							
	Concepts of state - state variables and state model - state space representation of							
	transfer function: Controllable Canonical Form - Observable Canonical Form -							
	Diagonal Canonical Form - diagonalization using linear transformation - solving							
	the time invariant state equations State Transition Matrix and its properties-							
	concepts of controllability and observability.							
	Total							

Text Books:

- 1. Modern Control Engineering by Kotsuhiko Ogata, Prentice Hall of India
- 2. Automatic control systems by Benjamin C.Kuo, Prentice Hall of India, 2nd Edition.

- 1. Control Systems principles and design by M.Gopal, Tata Mc Graw Hill education Pvt Ltd., 4th Edition.
- 2. Control Systems Engineering by Norman S. Nise, Wiley Publications, 7th edition
- 3. Control Systems by Manik Dhanesh N, Cengage publications.
- 4. Control Systems Engineering by I.J.Nagarath and M.Gopal, Newage International Publications, 5th Edition.
- 5. Control Systems Engineering by S.Palani, Tata Mc Graw Hill Publications.

III B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	RENEWABLE ENERGY SOURCES	OEC	3-0-0	3
R2011XXYY	(Open Elective –I)			

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Analyse solar radiation data, extra-terrestrial radiation, radiation on earth's surface	
	and solar Energy Storage.	
CO2	Design the components of wind energy systems.	
CO3	Illustrate the working of biomass, digesters and Geothermal plants.	
CO4	Demonstrate the principle of Energy production from OTEC, Tidal and Waves.	
CO5	Evaluate the concept and working of Fuel cells & MHD power generation.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1		1					1	1	1	1
CO2	2	2	3	2	1		1					1	1	1	1
CO3	2	2	3	2	1		1					1	1	1	1
CO4	1	2	2				1					1	1	1	1
CO5	1	2	2				1					1	1	1	1

(Please fill the above with Levels of Correlation, viz., L=1, M=2, H=3)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Solar Energy: Introduction - Renewable Sources - prospects, Solar radiation at	
	the Earth Surface - Equivalent circuit of a PV- I-V & P-V Characteristics of a	
	PV - Solar Energy Collectors-Flat plate Collectors, concentrating collectors -	
	Solar Energy storage systems – Solar Pond - Applications - Solar water heating	
	- Solar Green house.	
UNIT - 2	Wind Energy: Introduction - basic Principles of Wind Energy Conversion, the	
	nature of Wind - the power in the wind - Wind Energy Conversion - Site	
	selection considerations - basic components of a WECS (Wind Energy	
	Conversion Systems) - Classification of WEC Systems - Applications.	
UNIT - 3	Biomass and Geothermal Energy:	
	Biomass: Introduction - Biomass conversion technologies - Photosynthesis,	
	factors affecting Bio digestion - classification of biogas plants - Types of biogas	
	plants - selection of site for a biogas plant	

	Geothermal Energy: Introduction, Geothermal Sources - Applications -								
	operational and Environmental problems.								
UNIT - 4	Energy From oceans, Waves & Tides:								
	Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) – methods								
	- prospects of OTEC in India.								
	Waves: Introduction - Energy and Power from the waves - Wave Energy								
	conversion devices.								
	Tides: Basic principle of Tide Energy -Components of Tidal Energy.								
UNIT - 5	Chemical Energy Sources:								
	Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell -								
	types of Fuel Cells - Applications.								
	Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage								
	and Applications								
	Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation								
	- Types.								
	Total								

Text Books:

- 1. G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.
- 2. John Twidell & Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013.

- 1. S.P.Sukhatme & J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH, 2011.
- 2. John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2nd edition, 2013.
- 3. Shoba Nath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015.

III B.Tech I Semester

COURSE	ENERGY AUDITING, CONSERVATION	CATEGORY	L-T-P	CREDITS
CODE –	AND MANAGEMENT	OEC	3-0-0	3
R2011XXYY	(Open Elective –I)			

Pre-requisite: Basics of Electrical Engineering-Motor, Illumination concepts.

Course Outcomes: After the completion of the course the student should be able to:

	Knowledge
	Level (K)#
Understand the principles of energy audit along with various Energy related	
terminologies.	
Asses the role of Energy Manager and Energy Management program.	
Design a energy efficient motors and good lighting system.	
Analyse the methods to improve the power factor and identify the energy	
instruments for various real time applications.	
Evaluate the computational techniques with regard to economic aspects.	
	Understand the principles of energy audit along with various Energy related terminologies.Asses the role of Energy Manager and Energy Management program.Design a energy efficient motors and good lighting system.Analyse the methods to improve the power factor and identify the energy instruments for various real time applications.Evaluate the computational techniques with regard to economic aspects.

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1										2	2	1
CO2	2		2										2	2	1
CO3	2		2										2	2	1
CO4	2	1	2										2	2	1
CO5	2	2	2										2	2	1

(Please fill the above with Levels of Correlation, viz., L=1, M=2, H=3)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Basic Principles of Energy Audit Energy Audit - Definitions - Concept - Types Of Audit - Energy Index - Cost Index - Pie Charts - Sankey Diagrams And Load Profiles - Energy Conservation Schemes - Energy Audit Of Industries- Energy Saving Potential - Energy Audit Of Process Industry - Thermal Power Station - Building Energy Audit - Conservation Of Energy Building Codes (ECBC-2017)	
UNIT - 2	Energy Management	
	Principles Of Energy Management - Organizing Energy Management	
	Program - Initiating - Planning - Controlling - Promoting - Monitoring -	
	Reporting. Energy Manager - Qualities And Functions - Language -	

	Questionnaire – Check List For Top Management.								
UNIT - 3	Energy Efficient Motors and Lighting								
	Energy Efficient Motors - Factors Affecting Efficiency - Loss Distribution -								
	Constructional Details And Characteristics – Variable Speed - RMS - Voltage								
	Variation-Voltage Unbalance - Over Motoring-Motor Energy Audit -								
	Lighting System Design And Practice - Lighting Control - Lighting Energy								
	Audit.								
UNIT - 4	Power Factor Improvement and energy instruments								
	Power Factor – Methods of Improvement - Location of Capacitors - Power								
	Factor With Non-Linear Loads - Effect of Harmonics on P.F - P.F Motor								
	Controllers – Energy Instruments - Watt Meter - Data Loggers –								
	Thermocouples – Pyrometers - Lux Meters - Tongue Testers.								
UNIT - 5	Economic Aspects and their computation:								
	Economics Analysis Depreciation Methods - Time Value of Money – Rate Of								
	Return - Present Worth Method - Replacement Analysis - Lifecycle Costing								
	Analysis – Energy Efficient Motors. Calculation of Simple Payback Method -								
	Net Present Value Method- Power Factor Correction - Lighting -								
	Applications Of Life Cycle Costing Analysis - Return on Investment.								
	Total								

Text Books:

- 1. Energy Management by W.R.Murphy&G.Mckay Butter worth Heinemann publications 1982.
- 2. Energy Management Hand Book by W.CTurner John wiley and sons 1982.

- Energy Efficient Electric Motors by John.C.Andreas Marcel Dekker Inc Ltd-2nd Edition - 1995
- Energy Management by Paul o' Callaghan Mc-graw Hill Book company-1st edition -1998
- 3. Energy Management And Good Lighting Practice : Fuel Efficiency- Booklet12-EEO

III B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	OPTIMIZATION TECHNIQUES	OEC	3-0-0	3
R2011XXYY	(Open Elective –I)			

Pre-requisite: Basics on Mathematical Methods

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	State and formulate the optimization problem without and with constraints, also apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints and arrive at an optimal solution.	
CO2	Formulate a mathematical model and apply linear programming technique by using Simplex method. Also extend the concept of dual Simplex method for optimal solutions.	
CO3	Formulate a mathematical model and apply non-linear programming techniques for unconstrained and constrained case studies.	
CO4	Solve transportation and assignment problem by using Linear programming Simplex method.	
CO5	Formulate and apply Dynamic programming technique to inventory control, production planning, engineering design problems etc. to reach a final optimal solution from the current optimal solution.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2		2								2	3	2
CO2	2	2	2		2								2	3	2
CO3	3	2	3	1	2								2	3	2
CO4	2	2	2	2	1								2	3	2
CO5	2	2	2		2								2	3	2

(Please fill the above with Levels of Correlation - viz. - L=1 - M=2 - H=3)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction to Optimization Techniques	
	Statement of an Optimization problem – design vector – design constraints –	
	constraint surface - objective function - objective function surfaces -	
	classification of Optimization problems.	
	Classical Optimization Techniques	
	Single variable Optimization – multi variable Optimization without constraints	
	- necessary and sufficient conditions for minimum/maximum - multivariable	

	Optimization with equality constraints. Solution by method of Lagrange	
	multipliers - multivariable Optimization with inequality constraints - Kuhn -	
	Tucker conditions.	
UNIT - 2	Linear Programming	
	Standard form of a linear programming problem – geometry of linear	
	programming problems - definitions and theorems - solution of a system of	
	linear simultaneous equations - pivotal reduction of a general system of	
	equations – motivation to the simplex method – simplex algorithm - Duality in	
	Linear Programming – Dual Simplex method.	
UNIT - 3	Nonlinear Programming	
	Unconstrained cases - One – dimensional minimization methods:	
	Classification - Fibonacci method and Quadratic interpolation method -	
	Univariate method - Powell's method and steepest descent method.	
	Constrained cases - Characteristics of a constrained problem - Classification -	
	Basic approach of Penalty Function method; Basic approaches of Interior and	
	Exterior penalty function methods.	
UNIT - 4	Transportation Problem	
	Finding initial basic feasible solution by north – west corner rule - least cost	
	method and Vogel's approximation method – testing for optimality of balanced	
	transportation problems – Special cases in transportation problem.	
UNIT - 5	Dynamic Programming	
	Dynamic programming multistage decision processes – types – concept of sub	
	optimization and the principle of optimality – computational procedure in	
	dynamic programming – examples illustrating the calculus method of solution -	
	examples illustrating the tabular method of solution.	
	Total	

Text Books:

- 1. "Engineering optimization: Theory and practice"-by S. S.Rao New Age International (P) Limited 3rd edition 1998.
- 2. "Introductory Operations Research" by H.S. Kasene & K.D. Kumar Springer (India) 2013.

- "Optimization Methods in Operations Research and systems Analysis" by K.V. Mital and C. Mohan - New Age International (P) Limited - Publishers - 3rd edition - 1996.
- 2. Operations Research by Dr. S.D.Sharma Kedarnath Ramnath & Co 2012.
- 3. "Operations Research: An Introduction" by H.A.Taha PHI pvt. Ltd. 6th edition
- 4. Linear Programming–by G.Hadley.

III B.Tech I Semester

COURSE CODE -BASICS OF CONTROL SYSTEMSR2011XXYY(Open Elective -I)	CATEGORY	L-T-P	CREDITS
	OEC	3-0-0	3

Pre-requisite: Mathematics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Derive the transfer function of physical systems and determination of overall	2
	transfer function using block diagram algebra and signal flow graphs.	
CO2	Obtain the time response of first and specifications of second order systems and	3
	determine error constants	
CO3	Analyze absolute and relative stability of LTI systems using Routh's stability	4
	criterion and the root locus method.	
CO4	Analyze the stability of LTI systems using frequency response methods.	4
C05	Represent physical systems as state models and determine the response	3
	Understanding the concents of controllability and observability	5
	Understanding the concepts of controllability and observability.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	2	-	-	1	1	1	1	1	2	1	1
CO2	3	3	1	2	1	-	-	1	1	1	2	1	2	1	1
CO3	3	2	1	2	1	-	-	1	1	1	2	2	2	2	1
CO4	3	2	1	2	1	-	-	1	1	1	1	2	2	2	1
CO5	3	3	2	1	2	-	-	1	1	1	1	2	2	1	1

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Mathematical Modelling of Control Systems	
	Classification of control systems - open loop and closed loop control systems	
	and their differences - transfer function of linear system - differential	
	equations of electrical networks - translational and rotational mechanical	
	systems - transfer function of DC servo motor – AC servo motor – block	
	diagram algebra – representation by signal flow graph – reduction using	
	Mason's gain formula - Feedback characteristics.	
UNIT - 2	Time Response Analysis	
	Standard test signals – time response of first and second order systems – time	
	domain specifications - steady state errors and error constants - P - PI & PID	
	Controllers.	

UNIT - 3	Stability and Root Locus Technique	
	The concept of stability – Routh-Hurwitz –limitations of Routh-Hurwitz	
	criterion.	
	Root locus concept – construction of root loci (simple problems).	
UNIT - 4	Frequency Response Analysis	
	Introduction to frequency domain specifications – Polar Plot - Bode diagrams	
	– Transfer function from the Bode diagram – phase margin and gain margin	
	– stability analysis from Bode plots.	
UNIT - 5	State Space Analysis of LTI Systems	
	Concepts of state - state variables and state model - state space representation	
	of transfer function - diagonalization - solving the time invariant state	
	equations - State Transition Matrix and it's properties - concepts of	
	controllability and observability.	
	Total	

Text Books:

- 1. Modern Control Engineering by Kotsuhiko Ogata Prentice Hall of India.
- 2. Automatic control systems by Benjamin C.Kuo Prentice Hall of India 2nd Edition.

- 1. Control Systems principles and design by M.Gopal Tata Mc Graw Hill education Pvt Ltd. 4th Edition.
- 2. Control Systems by Manik Dhanesh N Cengage publications.
- 3. Control Systems Engineering by I.J.Nagarath and M.Gopal Newage International Publications 5th Edition.
- 4. Control Systems Engineering by S.Palani Tata Mc Graw Hill Publications.

III B.Tech I Semester

COURSE CODE – R2011XXYY	SWITCHGEAR AND PROTECTION (Professional Elective – I)	CATEGORY PEC	L-T-P 3-0-0	CREDITS 3
N2011AA11	(1 Toressional Elective – 1)			

Pre-requisite: Concepts of Power systems

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate the principles of arc interruption for application to high voltage circuit	
	breakers of air - oil - vacuum - SF_6 gas type.	
CO2	Analyse the working principle and operation of different types of electromagnetic	
	protective relays.	
CO3	Acquire knowledge of protective schemes for generator and transformers for	
	different fault conditions.	
CO4	Classify various types of protective schemes used for feeders and bus bar	
	protection and Types of static relays.	
CO5	Analyse the operation of different types of over voltages protective schemes	
	required for insulation co-ordination and types of neutral grounding.	
C05	Protection and Types of static relays. Analyse the operation of different types of over voltages protective schemes required for insulation co–ordination and types of neutral grounding.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	2									2	2	1
CO2	2	3	2	2									3	2	1
CO3	2	3	2	2									3	2	1
CO4	2	3	2	2									2	2	1
CO5	2	3	2	2									3	2	1

(Please fill the above with Levels of Correlation - viz. - L=1 - M=2 - H=3)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Circuit Breakers Application oriented evolution of Switchgear - Miniature Circuit Breaker(MCB)– Elementary principles of arc interruption– Restriking Voltage and Recovery voltages– Restriking phenomenon - RRRV– Average and Max. RRRV– Current chopping and Resistance switching– Concept of oil circuit breakers– Description and operation of Air Blast– Vacuum and SF6 circuit breakers– CB ratings and specifications– Concept of Auto reclosing– Numerical examples	
UNIT - 2	Electromagnetic Protection	
	Relay connection – Balanced beam type attracted armature relay - induction disc and induction cup relays–Torque equation - Relays classification–Instantaneous–	

	DMT and IDMT types– Applications of relays: Over current and under voltage	
	relays– Directional relays– Differential relays and percentage differential relays–	
	Universal torque equation- Distance relays: Impedance- Reactance- Mho and	
	offset mho relays- Characteristics of distance relays and comparison.	
UNIT - 3	Generator Protection	
	Protection of generators against stator faults- Rotor faults and abnormal	
	conditions- restricted earth fault and inter turn fault protection- Numerical	
	examples.	
	Transformer Protection	
	Percentage differential protection- Design of CT's ratio- Buchholz relay	
	protection–Numerical examples.	
UNIT - 4	Feeder and Bus bar Protection & Static Relays:	
	Over current Protection schemes – PSM - TMS – Numerical examples – Carrier	
	current and three zone distance relay using impedance relays.	
	Protection of bus bars by using Differential protection.	
	Static relays: Introduction – Classification of Static Relays – Basic Components	
	of Static Relays.	
UNIT - 5	Protection against over voltage and grounding	
	Generation of over voltages in power systems- Protection against lightning over	
	voltages– Valve type and zinc oxide lighting arresters.	
	Grounded and ungrounded neutral systems - Effects of ungrounded neutral on	
	system performance – Methods of neutral grounding: Solid-resistance-	
	Reactance–Arcing grounds and grounding Practices.	
	Total	
T (D)		

Text Books:

- 1. Power System Protection and Switchgear by Badri Ram and D.N Viswakarma Tata McGraw Hill Publications - 2nd edition - 2011.
- 2. Power system protection- Static Relays with microprocessor applications by T.S.Madhava Rao - Tata McGraw Hill - 2nd edition.

- 1. Fundamentals of Power System Protection by Paithankar and S.R.Bhide. PHI 2003.
- 2. Art & Science of Protective Relaying by C R Mason Wiley Eastern Ltd.
- 3. Protection and SwitchGear by BhaveshBhalja R.P. Maheshwari Nilesh G.Chothani -Oxford University Press - 2013.

III B.Tech I Semester

COURSE	UTILIZATION OF ELECTRICAL	CATEGORY	L-T-P	CREDITS
CODE –	ENERGY	PEC	3-0-0	3
R2011XXYY	(Professional Elective – I)			

Pre-requisite: Concepts of Electrical Engineering

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Identify various illumination methods produced by different illuminating sources.	
CO2	Identify a suitable motor for electric drives and industrial applications	
CO3	Identify most appropriate heating or welding techniques for suitable applications.	
CO4	Distinguish various traction system and determine the tractive effort and specific energy consumption.	
CO5	Validate the necessity and usage of different energy storage schemes for different	
	applications and comparisons.	
μn		

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		1								1	3	3	1
CO2	3	3		1								1	3	3	1
CO3	3	3		1								1	3	3	1
CO4	3	3		2								1	3	3	1
CO5	3	3		1			1					1	3	3	1

(Please fill the above with Levels of Correlation - viz. - L=1 - M=2 - H=3)

UNIT	CONTENTS	Contact Hours
UNIT - 1	Illumination fundamentals Introduction – terms used in illumination. Laws of illumination. Polar curves	
	Integrating sphere–Lux meter–Sources of light.	
	Various Illumination Methods	
	Discharge lamps - MV and SV lamps - Comparison between tungsten	
	filament lamps and fluorescent tubes-Basic principles of light control- Types	
	and design of lighting and flood lighting-LED lighting - Energy conservation.	
UNIT - 2	Selection of Motors	
	Choice of Motor - Type of Electric Drives - Starting And Running	
	Characteristics – Speed Control–Temperature Rise – Applications of Electric	
	Drives-Types of Industrial Loads-Continuous-Intermittent And Variable	

	Loads-Load Equalization - Introduction To Energy Efficient Motors	
LINUT 2	Ebads Ebad Equalization Introduction to Energy Effectint Wotors.	
UNII - 3	Electric Heating	
	Advantages and methods of electric heating-Resistance heating induction	
	heating and dielectric heating.	
	Electric Welding	
	Electric welding-Resistance and arc welding-Electric welding equipment-	
	Comparison between AC and DC Welding.	
UNIT - 4	Electric Traction	
	System of electric traction and track electrification- Review of existing	
	electric traction systems in India- Special features of traction motor-	
	Mechanics of train movement-Speed-time curves for different services -	
	Trapezoidal and quadrilateral speed time curves. Calculations of tractive	
	effort- power -Specific energy consumption for given run-Effect of varying	
	acceleration and braking retardation-Adhesive weight and braking retardation	
	adhesive weight and coefficient of adhesion-Numerical problems.	
UNIT - 5	Introduction to Energy Storage Systems	
	Need For Energy Storage - Types of Energy Storage-Thermal - Electrical -	
	Magnetic And Chemical Storage Systems - Comparison of Energy Storage	
	Technologies-Applications.	
	Total	

Text Books:

- 1. Utilization of Electric Energy by E. Openshaw Taylor Orient Longman.
- 2. Art & Science of Utilization of electrical Energy by Partab Dhanpat Rai& Sons.
- 3. "Thermal energy storage systems and applications"-by Ibrahim Dincer and Mark A.Rosen. John Wiley and Sons 2002.

- 1. Utilization of Electrical Power including Electric drives and Electric traction by N.V.Suryanarayana New Age International (P) Limited Publishers 1996.
- 2. Generation Distribution and Utilization of electrical Energy by C.L. Wadhwa New Age International (P) Limited Publishers 1997.

III B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE – R2011XXYY	HIGH VOLTAGE ENGINEERING (Professional Elective – I)	PEC	3-0-0	3

Pre-requisite: Concepts on Electric Supply Systems

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
CO1	Recognise the dielectric properties of gaseous materials used in HV equipment.	
CO2	Differentiate the break down phenomenon in liquid and solid dielectric materials.	
CO3	Acquaint with the techniques of generation of high AC and DC voltages	
CO4	Acquaint with the techniques of generation of high Impulse voltages and currents.	
CO5	Getting the knowledge of measurement of high AC - DC - Impulse voltages and	
0.00	currents	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					_	-									
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	2	3	3							2	1	2	3	2
CO2	2	2	2	2							2	1	2	3	2
CO3	2	2	2	3							2	2	2	3	2
CO4	2	2	2	2							1	1	3	2	2
CO5	2	2	2	2	3						1	1	2	2	2
(2									

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Break down phenomenon in Gaseous:	
	Insulating Materials: Types - applications and properties. Gases as insulating	
	media - Collision process - Ionization process - Townsend's criteria of	
	breakdown in gases and its limitations – Streamers Theory of break down –	
	Paschen's law- Paschens curve.	
UNIT - 2	Break down phenomenon in Liquids:	
	Liquid as Insulator – Pure and commercial liquids – Breakdown in pure and	
	commercial liquids.	
	Break down phenomenon in Solids:	
	Intrinsic breakdown – Electromechanical breakdown – Thermal breakdown –	
	Breakdown of composite solid dielectrics.	

UNIT - 3	Generation of High DC voltages:									
	Voltage Doubler Circuit - Voltage Multiplier Circuit - Vande- Graaff									
	Generator.									
	Generation of High AC voltages:									
	Cascaded Transformers – Resonant Transformers – Tesla Coil									
UNIT - 4	Generation of Impulse voltages:									
	Specifications of impulse wave – Analysis of RLC circuit only- Marx Circuit.									
	Generation of Impulse currents:									
	Definitions – Circuits for producing Impulse current waves – Wave shape									
	control - Tripping and control of impulse generators.									
UNIT - 5	Measurement of High DC & AC Voltages:									
	Resistance potential divider - Generating Voltmeter - Capacitor Voltage									
	Transformer (CVT) - Electrostatic Voltmeters – Sphere Gaps.									
	Measurement of Impulse Voltages & Currents:									
	Potential dividers with CRO - Hall Generator - Rogowski Coils.									
	Total									

Text Books:

- 1. High Voltage Engineering: Fundamentals by E.Kuffel W.S.Zaengl J.Kuffel by Elsevier 2nd Edition.
- 2. High Voltage Engineering and Technology by Ryan IET Publishers 2nd edition.

- 1. High Voltage Engineering by M.S.Naidu and V. Kamaraju TMH Publications 3rd Edition.
- 2. High Voltage Engineering by C.L.Wadhwa New Age Internationals (P) Limited 1997.
- 3. High Voltage Insulation Engineering by RavindraArora Wolfgang Mosch New Age International (P) Limited 1995.

III B.Tech I Semester

R2011XXYY (Professional Elective – I)

Pre-requisite: Concepts of Electrical Machines - Power Electronics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate basic concepts of renewable and distributed sources	
CO2	Demonstrate the components of wind energy conversion systems.	
CO3	Model PV systems and analyse MPPT Techniques.	
CO4	Illustrate the concept of Energy Production from Hydro - Tidal and Geothermal.	
CO5	Distinguish between standalone and grid connected DG systems and design	
	hybrid renewable energy systems.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	0				-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1						1	2	2	2	2
CO2	2	2	2	2	1							2	2	2	2
CO3	3	2	2	2								2	2	2	2
CO4	2	2	2	2								2	2	1	2
CO5	2	2	2	2	1							2	2	1	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Brief idea on renewable and distributed sources - their usefulness and	
	advantages; Wind Energy Systems: Estimates of wind energy potential - wind	
	maps - Instrumentation for wind velocity measurements - Aerodynamic and	
	mechanical aspects of wind machine design - Conversion to electrical energy	
	- Aspects of location of wind farms.	
UNIT - 2	Wind speed and energy - Speed and power relations - Power extraction from	
	wind - Tip speed ratio (TSR) - Functional structure of wind energy	
	conversion systems - Pitch and speed control - Power-speed-TSR	
	characteristics - Fixed speed and variable speed wind turbine control - Power	
	optimization - Electrical generators - Self-Excited and Doubly-Fed Induction	
	Generators operation and control.	
	*	

UNIT - 3	Solar PV Systems: Present and new technological developments in										
	photovoltaic - estimation of solar irradiance - components of solar energy										
	systems - solar-thermal system applications to power generation - heating -										
	Types of PV systems - Modelling of PV cell - current-voltage and power-										
	voltage characteristics - Effects of temperature - Solar array simulator - Sun										
	tracking - Peak power operations - PV system - MPPT techniques - Effects										
	of partial shading on the characteristic curves and associated MPPT techniques										
	- Solar park design outline.										
UNIT - 4	Hydel Power: Water power estimates - use of hydrographs - hydraulic turbine										
	- characteristics and part load performance - design of wheels - draft tubes										
	and penstocks - plant layouts; Brief idea of other sources viz tidal -										
	geothermal - gas-based - etc.										
UNIT - 5	Requirements of hybrid/combined use of different renewable and distributed										
	sources - Need of energy storage; Control of frequency and voltage of										
	distributed generation in Stand-alone and Grid-connected mode - use of										
	energy storage and power electronics interfaces for the connection to grid and										
	loads - Design and optimization of size of renewable sources and storages.										
	Total										

Text Books & Reference Books:

- 1. Math J. Bollen Fainan Hassan 'Integration of Distributed Generation in the Power System' IEEE Press 2011.
- 2. Loi Lei Lai and Tze Fun Chan 'Distributed Generation: Induction and Permanent Magnet Generators' Wiley-IEEE Press 2007.
- 3. Studies' Craig Anderson and Rudolf I. Howard 'Wind and Hydropower Integration: Concepts Considerations and Case Nova Publisher 2012.
- 4. Amanda E. Niemi and Cory M. Fincher 'Hydropower from Small and Low-Head Hydro Technologies' Nova Publisher 2011.
- 5. D. Yogi Goswami Frank Kreith and Jan F. Kreider 'Principles of Solar Engineering' Taylor & Francis 2000.
- 6. G. N. Tiwari 'Solar Energy Technology' Nova Science Publishers 2005.
- 7. Math J. Bollen Fainan Hassan 'Integration of Distributed Generation in the Power System' IEEE Press 2011.
- 8. S. Heier and R. Waddington 'Grid Intergration of Wind Energy Conversion Systems' Wiley 2006.

III B.Tech I Semester

CODE - PCC 0-0-3 1.5 R2011XXYY 1.5
--

Pre-requisite: Basics of Control Systems Theory.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#					
CO1	Analyze the performance and working Magnetic amplifier - D.C and A.C. servo motors and synchros.						
CO2	Design P - PI - PD and PID controllers						
CO3	Design lag - lead and lag-lead compensators						
CO4	Evaluate temperature control of an oven using PID controller						
CO5	Determine the transfer function of D.C Motor and examine the truth table of logic gates using PLC.						
CO6	Judge the stability in time and frequency domain and Kalman's test for controllability and observability.						

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2							1	1	1	1
CO2	3	3	3	2	2							2	2	1	1
CO3	3	2	3	2	2							1	2	1	2
CO4	3	2	2	2	2							2	2	1	2
CO5	3	2	2	2	3							2	3	2	1
CO6	3	2	1	2	2							1	1	1	1

III B.Tech I Semester

COURSE	CONTROL SYSTEMS LABORATORY	CATEGORY	L-T-P	CREDITS
CODE –		PCC	0-0-3	1.5
R2011XXYY				

Exp. No.	CONTENTS	Contact
	(Any 10 of the following experiments are to be conducted)	Hours
1	Analysis of second order system in time domain.	
2	Determination of performance characteristics of Synchro pair as error detector.	
3	Determination of performance of a second order systems with P - PD - PI -	
	PID Controllers.	
4	Design of Lag and lead compensating network using frequency domain	
	technique.	
5	Transfer function of DC motor	
6	Determination of stability of the transfer functions using Bode Plot - Root	
	locus - Nyquist Plots by simulation tools.	
7	Kalman's test of Controllability and Observability.	
8	Temperature controller using PID	
9	Performance analysis of magnetic amplifiers	
10	Performance analysis of AC servo motor	
11	Performance analysis of DC servo motor	
12	To study and verify the truth table of logic gates and simple Boolean	
	expressions using PLC	

III B.Tech I Semester

COURSE	POWER ELECTRONICS	CATEGORY	L-T-P	CREDITS
CODE –	LABORATORY	PCC	0-0-3	1.5
R2011XXYY				

Pre-requisite: Power Electronics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Analyze characteristics of various power electronic devices and design firing	
	circuits for SCR.	
CO2	Analyze the performance of single-phase dual converter and three-phase full-	
	wave bridge converters with both resistive and inductive loads.	
CO3	Examine the operation of Single-phase AC voltage regulator and Cycloconverter	
	with resistive and inductive loads.	
CO4	Differentiate the working and control of Buck converter - Boost converter -	
	single-phase square wave inverter and PWM inverter.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	1	-	-	3	2	1	-	2	3	3
CO2	3	2	3	2	2	1	-	-	3	2	1	-	2	3	3
CO3	3	2	3	2	2	1	-	-	3	2	1	-	2	3	3
CO4	3	2	3	2	2	1	-	-	3	2	1	-	2	3	3

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Week)

S.No	CONTENTS	Contact Hours
1.	Characteristics of SCR - Power MOSFET & Power IGBT.	
2.	R - RC & UJT firing circuits for SCR.	
3.	Single -Phase semi-converter with R & RL loads.	
4.	Single -Phase full-converter with R & RL loads.	
5.	Three- Phase full-converter with R & RL loads.	
6	Single-phase dual converter in circulating current & non circulating current	
0.	mode of operation.	
7.	Single-Phase AC Voltage Regulator with R & RL Loads.	
8.	Single-phase step down Cycloconverter with R & RL Loads.	
9.	Boost converter in Continuous Conduction Mode operation.	
10.	Buck converter in Continuous Conduction Mode operation.	
11.	Single -Phase square wave bridge inverter with R & RL Loads.	
12.	Single - Phase PWM inverter.	
13.	Three-phase bridge inverter with 120° and 180° conduction mode	
14.	SPWM control of Three-phase bridge inverter	

III B.Tech I Semester

COURSE CODE – R2011XXYY	SKILL ADVANCED COURSE-COURSES OFFERED BY SIEMENS CENTRE OF EXCELLENCE : AUTOMATION LAB- Basics of PLC - Basics of SCADA/ - ELECTRICAL & ENERGY STUDIES LAB- Basics of Low Voltage Switchgear - Basics of Induction Motor/ PROCESS INSTRUMENTATION LAB- Basics of Process Instrumentation	CATEGORY SC	L-T-P 0-0-4	CREDITS 2
-------------------------------	---	----------------	----------------	--------------

Pre-requisite:

Course Outcomes: At the end of the course - student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															
CO6															

S.No	CONTENTS	Contact Hours
	List of Experiments:	
	Any TEN of the following Experiments are to be conducted	
1.		
2.		
3.		
4.		

5.	
6.	
7.	
8.	
9.	
10.	

III B.Tech I Semester

COURSE CODE – R2011XXYY	ENVIRONMENTAL SCIENCE	CATEGORY MC	L-T-P 2-0-0	CREDITS 0
-------------------------------	-----------------------	----------------	----------------	--------------

Pre-requisite:

Course Outcomes: At the end of the course - student will be able to

		Knowledge
		Level (K)#
CO1	Understand ecosystem and its function in the environment.	
CO2	Acquire knowledge on the natural resources and their importance.	
CO3	Recognize the biodiversity of India and the threats to biodiversity, and	
	conservation practices to protect the biodiversity.	
CO4	Know various attributes of the pollution and their impacts and measures to reduce	
	or control the pollution along with waste management practices.	
CO5	Beware of social issues both rural and urban environment and possible means to	
	challenges like environmental impact assessment and the stages involved in EIA	
	and the environmental audit.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1							3	2				1			1
CO2		1					3	2				2			1
CO3						1	3	2				1			1
CO4						2	3	2				2			1
CO5						2	3	2		1		1			1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Multidisciplinary nature of Environmental Studies: Definition, Scope	
	and Importance – Sustainability: Stockholm and Rio Summit-Global	
	Environmental Challenges: Global warming and climate change, acid	
	rains, ozone layer depletion, population growth and explosion, effects;.	
	Role of information technology in environment and human health.	
	Ecosystems: Concept of an ecosystem Structure and function of an	
	ecosystem; Producers, consumers and decomposers Energy flow in the	
	ecosystem - Ecological succession Food chains, food webs and	
	ecological pyramids; Introduction, types, characteristic features, structure	
	and function of Forest ecosystem, Grassland ecosystem, Desert	

	ecosystem, Aquatic ecosystems.	
UNIT - 2	Natural Resources: Natural resources and associated problems. Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people. Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. Food resources: World food problems, changes caused by non- agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources. Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.	
UNIT - 3	Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity- classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.	
UNIT - 4	 Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being. Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management. 	
UNIT - 5	Social Issues and the Environment: Urban problems related to energy - Water conservation, rain water harvesting - Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.	

Environmental Management: Impact Assessment and its significance	
various stages of EIA, preparation of EMP and EIS, Environmental audit.	
Ecotourism, Green Campus – Green business and Green politics.	
The student should Visit an Industry / Ecosystem and submit a report	
individually on any issues related to Environmental Studies course and	
make a power point presentation.	
Total	

Text Books:

- 1. Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3. Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani;Pearson Education, Chennai

- 1. Text Book of Environmental Studies, Deeshita Dave & P. UdayaBhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4. Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age InternationalPublishers, 2014

III B.Tech I Semester

COURSE	SUMMER INTERNSHIP 2 MONTHS	CATEGORY	L-T-P	CREDITS
CODE –	(MANDATORY) AFTER SECOND	MC	2-0-0	0
R2011XXYY	YEAR (TO BE EVALUATED DURING			
	V SEMESTER			

Pre-requisite:

Course Outcomes: At the end of the course - student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															
CO6															

UNIT	CONTENTS	Contact Hours
UNIT - 1		
UNIT - 2		
UNIT - 3		
UNIT - 4		
UNIT - 5		
	Total	

III B.Tech II Semester

COURSE CODE – R2011XXYY	MICROPROCESSORS AND MICROCONTROLLERS	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
-------------------------------	---	-----------------	----------------	--------------

Pre-requisite: Basics of Processors

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know the concepts of the Microprocessor capability in general and explore the	
	evaluation of microprocessors.	
CO2	Analyse the instruction sets - addressing modes - minimum and maximum modes	
	operations of 8086 Microprocessors	
CO3	Analyse the Microcontroller and interfacing capability	
CO4	Describe the architecture and interfacing of 8051 controller	
CO5	Know the concepts of PIC micro controller and its programming.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	1	2	1								1	3	2	1
CO2	3	1	2	1								1	3	3	2
CO3	3	2	3	2	1							1	3	3	2
CO4	3	2	2	2								1	3	3	2
CO5	3	1	2	2	3							1	3	3	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction to Microprocessor Architecture	
	Introduction and evolution of Microprocessors - Architecture of 8086 -	
	Memory Organization of 8086 - Register Organization of 8086- Introduction	
	to 80286 - 80386 - 80486 and Pentium (brief description about architectural	
	advancements only).	
UNIT - 2	Minimum and Maximum Mode Operations	
	Instruction sets of 8086 - Addressing modes - Assembler directives - General	
	bus operation of 8086 – Minimum and Maximum mode operations of 8086 –	
	8086 Control signal interfacing – Read and write cycle timing diagrams.	
UNIT - 3	Microprocessors I/O interfacing	
	8255 PPI- Architecture of 8255-Modes of operation- Interfacing I/O devices	

	to 8086 using 8255-Interfacing A to D converters- Interfacing D to A											
	converters- Stepper motor interfacing- Static memory interfacing with 8086.											
	Architecture and interfacing of 8251 USART – Architecture and interfacing of											
	DMA controller (8257).											
UNIT - 4	8051 Microcontroller											
	Overview of 8051 Microcontroller - Architecture- Memory Organization -											
	Register set - I/O ports and Interrupts - Timers and Counters - Serial											
	Communication – Interfacing of peripherals- Instruction set.											
UNIT - 5	PIC Architecture											
	Block diagram of basic PIC 18 micro controller - registers I/O ports -											
	Programming in C for PIC: Data types - I/O programming - logical operations											
	- data conversion.											
	Total											

Text Books:

- 1. Ray and Burchandi "Advanced Microprocessors and Interfacing" Tata McGraw–Hill 3rd edition 2006.
- 2. Kenneth J Ayala "The 8051 Microcontroller Architecture Programming and Applications" Thomson Publishers 2nd Edition.
- PIC Microcontroller and Embedded Systems using Assembly and C for PIC 18 -Muhammad Ali Mazidi - RolindD.Mckinay - Danny causey -Pearson Publisher 21st Impression.

- 1. Microprocessors and Interfacing Douglas V Hall Mc-Graw Hill 2nd Edition.
- 2. R.S. Kaler "A Text book of Microprocessors and Micro Controllers" I.K. International Publishing House Pvt. Ltd.
- Ajay V. Deshmukh "Microcontrollers Theory and Applications" Tata McGraw–Hill Companies –2005. Ajit Pal - "Microcontrollers – Principles and Applications" - PHI Learning Pvt Ltd -2011.

III B.Tech II Semester

Pre-requisite: Concepts of Electrical Engineering.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Know the construction and working of various types of analog instruments.	
CO2	Describe the construction and working of wattmeter and power factor meters	
CO3	Know the construction and working various bridges for the measurement resistance - inductance and capacitance	
CO4	Know the operational concepts of various transducers	
CO5	Know the construction and operation digital meters	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3										1	2	
CO2	1	2	3										1	2	
CO3	1	2	3										1	2	
CO4	1	2	3		1								1	2	
CO5	1	2	3		1								1	2	

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Analog Ammeter and Voltmeters	
	Classification - deflecting - control and damping torques PMMC -	
	moving iron type and electrostatic instruments - Construction - Torque	
	equation - Range extension - Errors and compensations - advantages and	
	disadvantages. Instrument transformers: Current Transformer and Potential	
	Transformer-construction - theory - errors-Numerical Problems.	
UNIT - 2	Analog Wattmeter and Power Factor Meters	
	Electrodynamometer type wattmeter (LPF and UPF) - Power factor meters:	
	Dynamometer and M.I type (Single phase and Three phase) - Construction -	
	theory - torque equation - advantages and disadvantages.	
	Potentiometers: Introduction to DC and AC Potentiometers - Construction-	

	working – Applications - Numerical Problems.	
UNIT - 3	Measurements of Electrical parameters	
	DC Bridges: Method of measuring low - medium and high resistance -	
	sensitivity of Wheat stone's bridge - Kelvin's double bridge for measuring	
	low resistance - Loss of charge method for measurement of high resistance -	
	Megger – measurement of earth resistance - Numerical Problems.	
	AC Bridges: Measurement of inductance and quality factor Maxwell's	
	bridge Hay's bridge Anderson's bridge. Measurement of capacitance	
	and loss angle Desauty's bridge - Schering Bridge - Wien's bridge -	
	Wagner's earthing device Numerical Problems.	
UNIT - 4	Transducers	
	Definition - Classification - Resistive - Inductive and Capacitive Transducer	
	- LVDT - Strain Gauge - Thermistors - Thermocouples - Piezo electric and	1
		1
	Photo Diode Transducers - Hall effect sensors- Numerical Problems.	
UNIT - 5	Photo Diode Transducers - Hall effect sensors- Numerical Problems. Digital meters	
UNIT - 5	Photo Diode Transducers - Hall effect sensors- Numerical Problems.Digital metersDigital Voltmeters - Successive approximation DVM - Ramp type DVM and	
UNIT - 5	Photo Diode Transducers - Hall effect sensors- Numerical Problems.Digital metersDigital Voltmeters - Successive approximation DVM - Ramp type DVM andIntegrating type DVM - Digital frequency meter - Digital multimeter -	
UNIT - 5	 Photo Diode Transducers - Hall effect sensors- Numerical Problems. Digital meters Digital Voltmeters - Successive approximation DVM - Ramp type DVM and Integrating type DVM - Digital frequency meter - Digital multimeter - Digital tachometer - Digital Energy Meter - Q meter - Power Analyzer. 	
UNIT - 5	 Photo Diode Transducers - Hall effect sensors- Numerical Problems. Digital meters Digital Voltmeters - Successive approximation DVM - Ramp type DVM and Integrating type DVM - Digital frequency meter - Digital multimeter - Digital tachometer - Digital Energy Meter - Q meter - Power Analyzer. CRO- measurement of phase difference & Frequency using lissajious patterns 	
UNIT - 5	 Photo Diode Transducers - Hall effect sensors- Numerical Problems. Digital meters Digital Voltmeters - Successive approximation DVM - Ramp type DVM and Integrating type DVM - Digital frequency meter - Digital multimeter - Digital tachometer - Digital Energy Meter - Q meter - Power Analyzer. CRO- measurement of phase difference & Frequency using lissajious patterns - Numerical Problems. 	

Text Books:

- 1. Electrical Measurements and measuring Instruments by E.W. Golding and F.C.Widdis 5th Edition Wheeler Publishing.
- 2. Modern Electronic Instrumentation and Measurement Techniques by A.D. Helfrick and W.D. Cooper PHI 5th Edition 2002.
- 3. Electronic Instrumentation by H.S. Kalsi McGraw Hill 4th Edition 2019.

- 1. Electrical & Electronic Measurement & Instruments by A.K.Sawhney Dhanpat Rai & Co.Publications 19th revised edition 2011.
- 2. Electrical and Electronic Measurements and instrumentation by R.K.Rajput S.Chand 3rd edition.
- 3. Electrical Measurements by Buckingham and Price Prentice Hall
- 4. Electrical Measurements by Forest K. Harris. John Wiley and Sons
- 5. Electrical Measurements: Fundamentals Concepts Applications by Reissland M.U New Age International (P) Limited Publishers.
- 6. Electrical and Electronic Measurements by G.K.Banerjee PHI Learning Private Ltd New Delhi–2012.

III B.Tech II Semester

COURSE CODE – R2011XXYY	POWER SYSTEM ANALYSIS	CATEGORY PCC	L-T-P 3-0-0	CREDITS 3
-------------------------------	-----------------------	-----------------	----------------	--------------

Pre-requisite:

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Draw impedance diagram for a power system network and calculate per unit	3
	quantities.	
CO2	Apply the load flow solution to a power system using different methods.	4
~ ~ ~		
CO3	Form Z_{bus} for a power system networks and analyse the effect of symmetrical	4
	faults.	
CO4	Find the sequence components for power system Components and analyse its	4
	effects of unsymmetrical faults.	
CO5	Analyse the stability concepts of a power system.	4

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	. 0				1	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2	3	1	-	-	-	-	-	-	3	3	2
CO2	3	3	3	2	3	1	-	-	1	-	-	-	3	3	2
CO3	2	3	3	2	3	1	-	-	-	-	-	-	3	3	2
CO4	2	3	3	2	3	1	-	-	-	-	-	-	3	3	2
CO5	3	3	3	2	3	1	-	-	-	_	-	-	3	3	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Circuit Topology & Per Unit Representation	
	Graph theory definition – Formation of element node incidence and bus incidence	
	matrices – Primitive network representation – Formation of Y _{bus} matrix by	
	singular transformation and direct inspection methods - Per Unit Quantities-	
	Single line diagram – Impedance diagram of a power system – Numerical	
	Problems.	
UNIT - 2	Power Flow Studies	
	Necessity of power flow studies - Derivation of static power flow equations -	
	Power flow solution using Gauss-Seidel Method – Newton Raphson Method	
	(Rectangular and polar coordinates form) - Decoupled and Fast Decoupled	
	methods – Algorithmic approach – Numerical Problems on 3-bus system only.	

UNIT - 3	Z-Bus Algorithm & Symmetrical Fault Analysis							
	Formation of Z _{bus} : Algorithm for the Modification of Z _{bus} Matrix (without mutual							
	impedance) – Numerical Problems.							
	Symmetrical Fault Analysis:							
	Reactance's of Synchronous Machine – Three Phase Short Circuit Currents -							
	Short circuit MVA calculations for Power Systems – Numerical Problems.							
UNIT - 4	Symmetrical Components							
	Definition of symmetrical components - symmetrical components of unbalanced							
	three phase systems - Power in symmetrical components - Sequence							
	impedances: Synchronous generator - Transmission line and transformers -							
	Sequence networks – Numerical Problems.							
	Unsymmetrical Fault analysis							
	Various types of faults: LG- LL- LLG and LLL on unloaded alternator-							
	Numerical problems.							
UNIT - 5	Power System Stability Analysis							
	Elementary concepts of Steady state – Dynamic and Transient Stabilities – Swing							
	equation – Steady state stability – Equal area criterion of stability – Applications							
	of Equal area criterion - Factors affecting transient stability - Methods to							
	improve steady state and transient stability – Numerical problems.							
	Total							

Text Books:

- 1. Power System Analysis by Grainger and Stevenson Tata McGraw Hill.2003
- 2. Modern Power system Analysis by I.J.Nagrath & D.P.Kothari: Tata McGraw–Hill Publishing Company 3rd edition 2007.

- 1. Power System Analysis by A.R.Bergen Prentice Hall 2nd edition 2009.
- 2. Power System Analysis by HadiSaadat Tata McGraw-Hill 3rd edition 2010.
- 3. Power System Analysis by B.R.Gupta <u>A H Wheeler Publishing Company Limited</u> 1998.
- 4. Power System Analysis and Design by J.Duncan Glover M.S.Sarma T.J.Overbye Cengage Learning publications 5th edition 2011.

III B.Tech II Semester

COURSE	AI APPLICATIONS IN ELECTRICAL	CATEGORY	L-T-P	CREDITS
CODE –	ENGINEERING	PEC	3-0-0	3
R2011XXYY	(Professional Elective – II)			

Pre-requisite: Concepts of Linear and Boolean Algebra - Optimization Techniques.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Analyse different models of artificial neuron & Use learning methods of ANN.	
CO2	Evaluate different paradigms of ANN.	
CO3	Classify between classical and fuzzy sets.	
CO4	Illustrate different modules of Fuzzy logic controller.	
CO5	Apply Neural Networks and fuzzy logic for real-time applications.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2								2	2	2	1
CO2	2	2	2	1								2	2	1	1
CO3	3	2	2	1					-			2	2	1	1
CO4	3	2	2	1								2	2	1	1
CO5	3	2	2	2								2	2	2	2

UNIT	CONTENTS	Contact
UNIT - 1	Introduction Artificial Neural Networks (ANN) – Humans and computers – Biological neural networks – ANN Terminology – Models of Artificial neuron – activation functions – typical architectures – biases and thresholds – learning strategy(supervised - unsupervised and reinforced) – Neural networks learning rules. Single layer feed forward neural networks: concept of pattern and its types - perceptron training and classification using Discrete and Continuous perceptron algorithms– linear separability- XOR function.	
UNIT - 2	Multi-layer feed forward networks Generalized delta rule– Back Propagation algorithm– Radial Basis Function (RBF) network - Kohonen's self-organizing feature maps (KSOFM) - Learning Vector Quantization (LVQ) – Bidirectional Associative Memory (BAM) – Hopfield Neural Network.	

UNIT - 3	Classical Sets and Fuzzy Sets	
	Introduction to classical sets- properties - Operations and relations - Fuzzy sets -	
	Operations - Properties - Fuzzy relations - Cardinalities - Membership functions.	
UNIT - 4	Fuzzy Logic Modules	
	Fuzzification - Membership value assignment - development of rule base and	
	decision making system - Defuzzification to crisp sets - Defuzzification	
	methods.	
UNIT - 5	Applications	
	Neural network applications: Load flow studies - load forecasting - reactive	
	power control.	
	Fuzzy logic applications: Economic load dispatch - speed control of DC	
	motors - single area and two area load frequency control.	
	Total	

Text Books:

- 1. Introduction to Artificial Neural Systems Jacek M. Zuarda Jaico Publishing House 1997.
- 2. Neural Networks Fuzzy logic Genetic algorithms: synthesis and applications by RajasekharanandPai PHI Publication.

- 1. Artificial Neural Network B.Yegnanarayana PHI 2012.
- 2. Fuzzy logic with Fuzzy Applications T.J Ross Mc Graw Hill Inc 1997.
- 3. Introduction to Neural Networks using MATLAB 6.0 S N Sivanandam SSumathi S N Deepa TMGH
- 4. Introduction to Fuzzy Logic using MATLAB S N Sivanandam SSumathi S N Deepa Springer 2007.

III B.Tech II Semester

COURSE	FLEXIBLE ALTERNATING CURRENT	CATEGORY	L-T-P	CREDITS
CODE –	TRANSMISSION SYSTEMS	PEC	3-0-0	3
R2011XXYY	(Professional Elective – II)			

Pre-requisite: Concepts of Power Systems and Power Electronics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know the concepts of facts controller and power flow control in transmission line.	
CO2	Demonstrate operation and control of voltage source converter and know the concepts	
	current source converter.	
CO3	Analyse compensation by using different compensators to improve stability and reduce	
	power oscillations in the transmission lines.	
CO4	Know the concepts methods of compensations using series compensators.	
CO5	Analyse operation of Unified Power Flow Controller (UPFC) and Interline power flow	
	controller (IPFC).	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1	1	1				2		3	3	2
CO2	3	2	1	2	2						1	1	3	2	2
CO3	3	2	2	2	2	1	1				2	1	3	2	2
CO4	3	2	2	2	2	1	1				2	1	3	2	2
CO5	3	2	3	2	2						2	1	3	2	2

UNIT	CONTENTS	Contact
		nours
UNIT - 1	Introduction to FACTS	
	Power flow in an AC System – Loading capability limits – Dynamic stability	
	considerations - Importance of controllable parameters - Basic types of	
	FACTS controllers - Benefits from FACTS controllers - Requirements and	
	characteristics of high power devices – Voltage and current rating – Losses	
	and speed of switching – Parameter trade–off devices.	
UNIT - 2	Voltage source and Current source converters	
	Voltage source converter (VSC) – Single phase full-wave bridge converter –	
	Square wave voltage harmonics for a single-phase bridge converter - Three-	
	phase full-wave bridge converter - Transformer connections for 12 pulse	
	operation.	
	Current Source Converter (CSC)-Three-phase current source converter -	
	Comparison of current source converter with voltage source converter.	

UNIT - 3	Shunt Compensators	
	Objectives – Mid–point voltage regulation for line segmentation – End of line	
	stability – Power oscillation damping.	
	Variable Impedance Type VAR Generator: Thyristor Switched/Controlled	
	Reactor (TSR/TCR) – Thyristor Switched Capacitor (TSC) – Fixed Capacitor–	
	Thyristor Controlled Reactor (FC-TCR) - Thyristor Switched Capacitor and	
	Thyristor Controlled Reactor (TSC-TCR) - Switching Converter type VAR	
	generator.	
	Principle of operation and comparison of SVC and STATCOM.	
UNIT - 4	Series Compensators	
	Concept of series capacitive compensation - Improvement of transient	
	stability – Power oscillation damping – Functional requirements. Variable	
	Impedance type series compensators - GTO Thyristor controlled Series	
	Capacitor (GSC) – Thyristor Switched Series Capacitor (TSSC) and Thyristor	
	Controlled Series Capacitor (TCSC) - Switching Converter type Series	
	Compensation – Static Synchronous Series Compensator.	
UNIT - 5	Combined Compensators	
	Schematic and basic operating principles of unified power flow controller	
	(UPFC) and Interline power flow controller (IPFC) – Controller applications	
	of transmission lines.	
	Total	

Text Books:

1. "Understanding FACTS" N.G.Hingorani and L.Guygi - IEEE Press.Indian Edition is available:—Standard Publications - 2001.

- 1. "Flexible ac transmission system (FACTS)" Edited by Yong Hue Song and Allan T Johns
 - Institution of Electrical Engineers London.

III B.Tech II Semester

COURSE	ELECTRICAL DISTRIBUTION SYSTEMS	CATEGORY	L-T-P	CREDITS
CODE –	(Professional Elective – II)	PEC	3-0-0	3
R2011XXYY				

Pre-requisite: Basic concepts of Electric circuits and power systems.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Discriminate various factors of distribution system - load modelling and characteristic of	
	loads.	
CO2	Know the concept of design considerations of substation and distribution feeders.	
CO3	Determine the voltage drop and power loss for different types of distribution loads.	
CO4	Analyse the protection and its coordination for distribution systems.	
CO5	Analyse the effect of compensation for p.f improvement and voltage improvement.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

11					1	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	1	2	-	-	-	-	-	-	2	3	1
CO2	3	2	3	1	1	3	-	-	-	-	-	-	2	3	1
CO3	3	2	3	2	1	3	-	-	-	-	-	3	2	3	1
CO4	3	2	3	2	1	2	-	-	-	-	-	-	2	3	1
CO5	3	2	3	2	1	3	-	-	-	-	-	3	2	3	1

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact Hours
UNIT - 1	General Concepts	
	Introduction to distribution systems - Distribution system losses - Coincidence	
	factor - Contribution factor - loss factor - Relationship between the load	
	factor and loss factor - Numerical Problems - Load Modeling and	
	Characteristics - Classification and characteristics of loads (Residential -	
	commercial - Agricultural and Industrial).	
UNIT - 2	Substations	
	Selection for location of substations - Rating of distribution substation -	
	Service area with 'n' primary feeders – K- Factors - Benefits and methods of	
	optimal location of substations.	
	Distribution Feeders	
	Design Considerations of distribution feeders: Radial and loop types of	

	primary feeders – Voltage levels – Feeder loading – Basic design practice of	
	the secondary distribution system.	
UNIT - 3	System Analysis	
	Voltage drop and power – loss calculations: Derivation for voltage drop and	
	power loss in lines – Uniformly distributed loads and non-uniformly	
	distributed loads – Three phase balanced primary lines – and Non three phase	
	balanced primary lines.	
UNIT - 4	Protection	
	Objectives of distribution system protection -Time current characteristics -	
	Protective devices: Principle of operation of fuses - Circuit reclosures - Line	
	sectionaliser and circuit breakers - Earth leakage circuit breakers - Protection	
	schemes of parallel & Ring-main feeders.	
	Coordination of protective devices	
	General coordination procedure -Various types of co-ordinated operation of	
	protective devices - Residual Current Circuit Breaker.	
UNIT - 5	Compensation for Power Factor Improvement	
	Capacitive compensation for power factor control – Different types of power	
	capacitors - shunt and series capacitors - Effect of shunt capacitors (Fixed and	
	switched) - Power factor correction - Capacitor allocation - Economic	
	justification – Procedure to determine the best capacitor location.	
	Voltage Control	
	Equipment for voltage control - Effect of series capacitors - Effect of	
	AVB/AVR – Line drop compensation.	
	Total	

Text Book:

1. "Electric Power Distribution system - Engineering" – by Turan Gonen - McGraw–hill - 2nd edition - 2008.

- 1. Electrical Distribution Systems by Dale R.Patrick and Stephen W.Fardo CRC press 2^{nd} edition.
- Electric Power Distribution by A.S. Pabla Tata McGraw–hill Publishing Company -4th edition - 1997.
- 3. Electrical Power Distribution Systems by V.Kamaraju Right Publishers.

III B.Tech II Semester

	COURSE CODE – R2011XXYY	ELECTRIC DRIVES (Professional Elective – II)	CATEGORY PEC	L-T-P 3-0-0	CREDITS 3
--	-------------------------------	---	-----------------	----------------	--------------

Pre-requisite:

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Understand the fundamentals of electric drive and different electric braking methods	2
CO2	Analyze the operation of three-phase converter-controlled DC motors and four quadrant operation of DC motors using dual converters	4
CO3	Illustrate the DC-DC converter fed control of dc motors in various quadrants of operation	3
CO4	Show the application of AC voltage controllers and voltage source inverters for speed control of induction motors. Apply static rotor resistance control and various slip power recovery schemes for speed control of Induction motor	4
CO5	Illustrate the concepts of speed control of synchronous motor with different methods.	3

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	-	1	-	-	-	-	1	2	2	2	2
CO2	3	3	3	3	-	1	-	-	-	-	1	3	3	3	2
CO3	3	3	2	2	-	1	-	-	-	-	1	2	3	3	2
CO4	3	3	3	3	-	1	-	-	-	-	1	3	3	3	2
CO5	2	2	2	2	-	1	-	-	-	-	1	2	3	2	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Fundamentals of Electric Drives	
	Electric drive and its components-Fundamental torque equation - Load torque	
	components - Nature and classification of load torques - Steady state stability -	
	Load equalization- Four quadrant operation of drive (hoist control) - Braking	
	methods: Dynamic – Plugging – Regenerative methods.	
UNIT - 2	Controlled Converter Fed DC Motor Drives	
	3-phase half and fully-controlled converter fed separately and self-excited DC	
	motor drive - Output voltage and current waveforms - Speed-torque	
	expressions – Speed-torque characteristics – Dual converter fed DC motor	
	drives -Numerical problems.	

UNIT - 3	DC-DC Converters Fed DC Motor Drives	
	Single quadrant – Two quadrant and four quadrant DC-DC converter fed	
	separately excited and self-excited DC motors – Continuous current operation -	
	Output voltage and current waveforms - Speed-torque expressions and	
	characteristics – Closed loop operation (qualitative treatment only).	
UNIT - 4	Stator and Rotor side control of 3-phase Induction motor Drive	
	Stator voltage control using 3-phase AC voltage regulators – Waveforms –	
	Speed torque characteristics- Variable Voltage Variable Frequency control of	
	induction motor by PWM voltage source inverter – Closed loop V/f control of	
	induction motor drives (qualitative treatment only). Static rotor resistance	
	control – Slip power recovery schemes – Static Scherbius drive – Static Kramer	
	drive – Performance and speed torque characteristics.	
UNIT - 5	Control of Synchronous Motor Drives	
	Separate control of synchronous motor – self-control of synchronous motor	
	employing load commutated thyristor inverter - closed loop control of	
	synchronous motor drive (qualitative treatment only)- PMSM (Basic operation	
	only).	
	Total	

Text Books:

- 1. Fundamentals of Electric Drives by G K Dubey Narosa Publications 2nd edition 2002.
- 2. Power Semiconductor Drives by S.B.Dewan G.R.Slemon A.Straughen Wiley India 1984.

- 1. Electric Motors and Drives Fundamentals Types and Apllications by Austin Hughes and Bill Drury Newnes.4th edition 2013.
- 2. Thyristor Control of Electric drives Vedam Subramanyam Tata McGraw Hill Publications 1987.
- 3. Power Electronic Circuits Devices and applications by M.H.Rashid PHI 3rd edition 2009.
- 4. Power Electronics handbook by Muhammad H.Rashid Elsevier 2nd edition 2010.

III B.Tech II Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	NEURAL NETWORKS AND FUZZY LOGIC	OEC	3-0-0	3
R2011XXYY	(Open Elective – II)			
D				

Pre-requisite:

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Analyse different models of artificial neuron.	
CO2	Illustrate training and classification using perceptron algorithms.	
CO3	Evaluate different paradigms of ANN.	
CO4	Classify between classical and fuzzy sets.	
CO5	Analyse various modules of Fuzzy logic controller.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1								2	2	1	2
CO2	2	2	2	2								2	2	1	2
CO3	3	2	2	2								2	2	2	2
CO4	3	2	2	2								2	2	1	2
CO5	2	2	2	2								2	2	1	1

UNIT	CONTENTS	Contact Hours
UNIT - 1	Introduction	110015
	Artificial Neural Networks (ANN) – Humans And Computers – Biological Neural	
	Networks – ANN Terminology – Models of Artificial Neuron – activation functions	
	- typical architectures - biases and thresholds - learning strategy(supervised -	
	unsupervised and reinforced) – Neural networks learning rules.	
UNIT - 2	Feed Forward Networks:	
	Single Layer Feed Forward Neural Networks: Concept Of Pattern And Its Types -	
	Perceptron Training And Classification Using Discrete And Continuous Perceptron	
	Algorithms– Linear Separability- XOR Function.	
UNIT - 3	ANN Paradigms	
	Multi-layer feed forward networks -Generalized delta rule- Back Propagation	
	algorithm - Radial Basis Function (RBF) network - Kohonen's self-organizing	
	feature maps (KSOFM) – Bidirectional Associative Memory (BAM).	

UNIT - 4	.Classical and Fuzzy Sets Introduction to classical sets- properties - Operations and relations; Fuzzy sets - Operations - Properties - Fuzzy relations - Cardinalities - Membership	
	functions.	
UNIT - 5	Fuzzy Logic Modules	
	Fuzzification - Membership value assignment - development of rule base and	
	decision making system - Defuzzification to crisp sets - Defuzzification	
	methods.	
	Total	

Text Books:

- 1. Introduction to Artificial Neural Systems Jacek M. Zuarda Jaico Publishing House 1997.
- 2. Neural Networks -Fuzzy logic Genetic algorithms: synthesis and applications by RajasekharanandPai PHI Publication.

- 1. Artificial Neural Network B.Yegnanarayana PHI 2012.
- 2. Fuzzy logic with Fuzzy Applications T.J Ross Mc Graw Hill Inc 1997.
- 3. Introduction to Neural Networks using MATLAB 6.0 S N Sivanandam SSumathi S N Deepa TMGH
- 4. Introduction to Fuzzy Logic using MATLAB S N Sivanandam SSumathi S N Deepa Springer 2007.

III B.Tech II Semester

COURSE	BASICS OF POWER SYSTEMS AND POWER	CATEGORY	L-T-P	CREDITS
CODE –	QUALITY	OEC	3-0-0	3
R2011XXYY	(Open Elective – II)			

Pre-requisite: Basic Electrical Engineering.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Know main conventional and renewable power generation schemes.	
CO2	Analyse the effect of harmonic distortion on electric equipment.	
CO3	Provide solutions for power factor improvement	
CO4	Learn the need of good quality power.	
CO5	Design custom power devices for power quality improvement.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	0				-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	1	2	1	1	1	2	2	1	1	2
CO2	1	1	2	1	1	2	1	1	1	1	2	2	2	2	1
CO3	1	2	2	2	1	2	1	1	2	1	3	2	1	2	1
CO4	1	2	2	2	2	2	1	1	2	1	2	2	1	2	1
CO5	1	1	2	2	1	2	1	1	1	1	1	2	1	2	1
		-													

UNIT	CONTENTS	Contact Hours
UNIT - 1	Basic Power Systems	
	Conventional Power generation-Hydel and thermal (block diagram only)-	
	Renewable power generation-solar and wind (block diagrams only) -	
	advantages and limitations of renewable power generation-Basic concepts of	
	transmission and distribution.	
UNIT - 2	Harmonics	
	Linear and nonlinear loads-examples - harmonics - total harmonic distortion	
	(THD)-sources of harmonics-Effect of Harmonic distortion- impact on	
	capacitors - Transformers - motors and meters.	
UNIT - 3	Power Factor	
	AC apparent power - Active Power - Reactive Power - Power factor - power	
	factor with non-linear loads - True Power factor - need for power factor	
	improvement.	

UNIT - 4	Power Quality Power Quality definition-need for quality power- power quality issues-voltage sag - voltage swell - low voltage - over voltage - short and long interruptions - voltage fluctuations - voltage unbalance – wave form distortion -Power quality issues due to renewable power generation.	
UNIT - 5	Custom Power Devices Reactive power and harmonic compensation devices - static var compensator - static shunt compensation; compensation devices for voltage sag and momentary interruptions - source transfer switch - Hybrid source transfer switch - high speed mechanical source transfer switch; back up energy supply devices -battery UPS - Super conducting magnetic energy storage (SMES) - flywheel.	
	Total	

Text Books:

- 1. Electrical Power Systems Quality Dugan R C McGranaghan M F Santoso S and Beaty H W Second Edition McGraw-Hill 2002.
- 2. Understanding Power Quality Problems: Voltage Sags and Interruptions Bollen M H J First Edition IEEE Press; 2000.
- 3. Guidebook on Custom Power Devices Technical Report Published by EPRI Nov 2000
- Power Quality Enhancement Using Custom Power Devices Power Electronics and Power Systems - Gerard Ledwich - Arindam Ghosh - Kluwer Academic Publishers - 2002.

- 1. Power Quality Primer Kennedy B W First Edition McGraw-Hill 2000.
- Power System Harmonics Arrillaga J and Watson N R Second Edition John Wiley & Sons -2003.
- 3. Electric Power Quality control Techniques W. E. Kazibwe and M. H. Sendaula Van Nostrad Reinhold New York.
- 4. Power Quality c.shankaran CRC Press 2001
- 5. Harmonics and Power Systems Franciso C.DE LA Rosa-CRC Press (Taylor & Francis).
- 6. Power Quality in Power systems and Electrical Machines-EwaldF.fuchs Mohammad A.S. Masoum-Elsevier
- 7. Power Quality C. Shankaran CRC Press 2001
- Instantaneous Power Theory and Application to Power Conditioning H. Akagiet.al. IEEE Press - 2007.
- 9. Custom Power Devices An Introduction Arindam Ghosh and Gerard Ledwich Springer 2002
- A Review of Compensating Type Custom Power Devices for Power Quality Improvement Yash Pal et.al. - Joint International Conference on Power System Technology and IEEE Power India Conference - 2008. POWERCON 2008.

III B.Tech II Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE – R2011XXYY	BASICS OF ELECTRICAL MEASUREMENTS (Open Elective – II)	OEC	3-0-0	3

Pre-requisite: Basic concepts of Electrical Engineering

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
C01	Choose right type of instrument for measurement of ac and dc voltage and current.	
CO2	Analyse the operation of wattmeter and energy meter.	
CO3	Differentiate the operation of AC and DC bridges.	
CO4	Describe the operation various Transducers.	
CO5	Know the importance of Digital Meters and their working principles.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	<u> </u>									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3										1	2	
CO2	1	2	3										1	2	
CO3	1	2	3										1	2	
CO4	1	2	3		1								1	2	
CO5	1	2	3		1								1	2	

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	UNIT–I:	
	Analog Ammeter and Voltmeters	
	Classification – deflecting - control and damping torques – Construction of	
	PMMC - Moving Iron and Electro dynamo instruments - Torque equation -	
	Errors and Compensation – Numerical Problems.	
UNIT - 2	Analog Wattmeters and Energy Meters	
	Electrodynamometer type wattmeter (LPF and UPF) - Induction Type Energy	
	meters-Construction and working - Errors and Compensation- Numerical	
	Problems.	
UNIT - 3	Measurements of Electrical parameters	
	DC Bridges: Measurement of Resistance - Kelvin's double bridge -	

	Wheatstone bridge – Numerical Problems.							
	AC Bridges: Measurement of inductance and quality factor - Maxwell's							
	bridge - measurement of capacitance - Schering Bridge- Numerical							
	Problems.							
UNIT - 4	Transducers							
	Classification - Resistive (Strain Gauge) - Inductive (LVDT) and Capacitive							
	(Piezo electric) Transducer – Numerical Problems.							
UNIT - 5	Digital Meters							
	Successive approximation Digital Voltmeter — Digital frequency meter -							
	Digital multimeter - Digital Energy Meter.							
	Total							

Text Books:

- 1. Electrical & Electronic Measurement & Instruments by A.K.Sawhney Dhanpat Rai & Co.Publications 19th revised edition 2011.
- 2. Electronic Instrumentation by H.S.Kalsi THM.

- 1. Electrical Measurements and measuring Instruments by E.W. Golding and F.C.Widdis 5th Edition Wheeler Publishing.
- 2. Modern Electronic Instrumentation and Measurement Techniques by A.D. Helfrick and W.D. Cooper PHI 5th Edition 2002.
- 3. Electrical and Electronic Measurements and instrumentation by R.K.Rajput S.Chand 3rd edition.

III B.Tech II Semester

COURSE CODE -INDIAN ELECTRICITY ACT-2003R2011XXYY(Open Elective - II)	CATEGORY	L-T-P	CREDITS
	OEC	3-0-0	3

Pre-requisite: Concepts of Generation - Transmission and Distribution.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Learn the national policy and plan and the joint responsibilities of state and central governments	
CO2	Analyse the licensing and the provisions related to transmission and distribution of electricity	
CO3	Remember the composition and powers of Regulatory commissions and CEA	
CO4	Learn the functions of Appellate Tribunal for electricity	
CO5	Know the constitution procedure and provisions in Special courts and dispute resolutions	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	1	-	-	-	-	-	2	-	2	3	1
CO2	3	2	2	1	1	-	-	-	-	-	1	-	2	3	1
CO3	3	2	1	1	1	-	-	-	-	-	1	-	2	3	2
CO4	3	2	2	1	1	-	-	-	-	-	2	-	2	3	1
CO5	3	2	2	2	1	-	-	-	-	-	2	-	2	3	1

UNIT	CONTENTS					
		Hours				
UNIT - 1	National Electricity Policy And Plan - Generation of Electricity					
	Electricity Act: commencement - definitions - comments; national policy on standalone systems - non-conventional energy systems - electrification and local distribution for rural areas; joint responsibilities of state and central governments in rural electrification - requirement for setting up of generating station - hydro-electric generation - captive generation; duties of generating companies.					
UNIT - 2	Licensing - Transmission And Distribution Of Electricity					
	Licensing: powers - procedures - conditions - amendments - revocation -					
	provisions - directions - suspension and sale; inter-state and intra-state transmission; other provisions relating to transmission; provisions with respect					

	to distribution licenses - electricity traders - supply generally; consumer							
	protection: standard performance.							
UNIT - 3	Tariff - CEA and Regulatory Commissions							
	Works of licenses - provisions relating to overhead lines; Constitution and							
	functions of Central Electricity Authority (CEA) - directions and certain							
	powers; Constitution - powers and functions of state and central commissions							
	- other provisions - proceedings and powers of Appropriate commission -							
	Grants - Fund - Accounts Audit and Report.							
UNIT - 4	Appellate Tribunal - Reorganisation of Boards - Offences and Penalty							
	Appellate Tribunal for electricity; investigation and assessment; reorganisation							
	of boards; Offences and penalties							
UNIT - 5	Special Courts - Dispute Resolution - Other Provisions and							
	Miscellaneous							
	Constitution of special courts - procedures - powers - appeal - revision;							
	arbitration; protective clauses; miscellaneous and enactments.							
	Total							

Text Books:

1. The Electricity Act - 2003 {Act 36 of 2003 - dt.2-6-2003 - w.e.f. 10-6-2003 vide S.O. No. 669(E) - dt. 10-6-2003] published by Commercial Law Publishers (I) Pvt. Ltd.

III B.Tech II Semester

COURSE CODE – R2011XXYY	ELECTRICAL MEASUREMENTS AND INSTRUMENTATION LABORATORY	CATEGORY PCC	L-T-P 0-0-3	CREDITS 1.5
-------------------------------	---	-----------------	----------------	----------------

Pre-requisite: Concepts of Electrical Instruments and its Measurements.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know about the phantom loading.	
CO2	Learn the calibration process.	
CO3	Measure the electrical parameters voltage - current - power - energy and electrical characteristics of resistance - inductance and capacitance.	
CO4	Gain the skill knowledge of various brides and their applications.	
CO5	Learn the usage of CT's - PT's for measurement purpose.	
CO6	Know the characteristics of transducers.	
CO7	Measure the strains - frequency and phase difference.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1		2					3	2			2	2	
CO2	3	1							3	2			2	2	
CO3	3	1							3	2			2	2	
CO4	3	1							3	2			2	2	
CO5	3	1							3	2			2	2	
CO6	3	1							3	2			2	2	
CO7	3	1							3	2			2	2	

III B.Tech II Semester

COURSE	ELECTRICAL MEASUREMENTS AND	CATEGORY	L-T-P	CREDITS
CODE –	INSTRUMENTATION LABORATORY	PCC	0-0-3	1.5
R2011XXYY				

S.No	CONTENTS	Contact Hours
1.	Calibration of dynamometer wattmeter using phantom loading	
2.	Measurement of resistance using Kelvin's double Bridge and Determination of its tolerance.	
3.	Measurement of Capacitance using Schering Bridge.	
4.	Measurement of Inductance using Anderson Bridge.	
5.	Calibration of LPF Wattmeter by direct loading.	
6.	Measurement of 3 phase reactive power using single wattmeter method for a balanced load.	
7.	Testing of C.T. using mutual inductor – Measurement of % ratio error and phase angle of given C.T. by Null deflection method.	
8.	P.T. testing by comparison – V.G as Null detector – Measurement of % ratio error and phase angle of the given P.T.	
9.	Determination of the characteristics of a Thermocouple.	
10.	Determination of the characteristics of a LVDT.	
11.	Determination of the characteristics for a capacitive transducer.	
12.	Measurement of strain for a bridge strain gauge.	
13.	Measurement of Choke coil parameters and single phase power using three voltmeter and three ammeter methods.	
14.	Calibration of single phase Energy Meter.	
15.	Dielectric oil Test using HV Kit.	
16.	Calibration of DC ammeter and voltmeter using Crompton DC Potentiometer.	
17.	AC Potentiometer: Polar Form / Cartesian Form - Calibration of AC voltmeter - Parameters of choke.	

III B.Tech II Semester

COURSE	MICROPROCESSORS AND	CATEGORY	L-T-P	CREDITS
CODE –	MICROCONTROLLERS LAB	PCC	0-0-3	1.5
R2011XXYY				

Pre-requisite: Concepts of Microprocessors and Microcontrollers

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Write assembly language program using 8086 microprocessor based on arithmetic	
	- logical - number systems and shift operations.	
CO2	Write assembly language programs for numeric operations and array handling	
	problems.	
CO3	Write a assembly program on string operations.	
<u> </u>		
CO4	Interface 8086 with I/O and other devices.	
CO5	Do parallel and serial communication using 8051 & PIC 18 micro controllers.	
CO6	Program microprocessors and microcontrollers for real world applications.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2							1	2	3	2
CO2	3	3	3	3								1	2	3	2

CO3	3	2	2	3	1	 	 	 	1	2	3	2
CO4	3	3	3	2	1	 	 	 	1	2	3	2
CO5	3	3	3	3	3	 	 	 	1	2	3	2
CO6	3	3	3	3		 	 	 	1	2	3	2

S No	CONTENTS	Contact							
5.110	Any 10 of the following experiments are to be conducted:	Hours							
	8086 Microprocessor Programs:								
	Arithmetic operations - Two 16-bit numbers and multibyte addition -								
1.	subtraction - multiplication and division - Signed and unsigned arithmetic								
	operations - ASCII – Arithmetic operations.								
2	Logic operations – Shift and rotate – Converting packed BCD to unpacked								
	BCD - BCD to ASCII conversion.								
3.	Arrange the given array in ascending and descending order								
4.	Determine the factorial of a given number								
5	By using string operation and Instruction prefix: Move block - Reverse string								
5.	Sorting - Inserting - Deleting - Length of the string - String comparison.								
6.	Find the first and n th number of 'n' natural numbers of a Fibonacci series.								
7.	Find the number and sum of even and odd numbers of a given array								
8.	Find the sum of 'n' natural numbers and squares of 'n' natural numbers								
9.	Arithmetic operations on 8051								
10	Conversion of decimal number to hexa equivalent and hexa equivalent to								
10.	decimal number								
11	Find the Sum of elements in an array and also identify the largest & smallest								
11.	number of a given array using 8051								
	Programs on Interfacing:								
12.	Interfacing 8255–PPI with 8086.								
13.	Stepper motor control using 8253/8255.								
14.	Reading and Writing on a parallel port using 8051								
15.	Timer in different modes using 8051								
16.	Serial communication implementation using 8051								
17.	Understanding three memory areas of 00 – FF Using 8051 external interrupts.								
18.	Traffic Light Controller using 8051.								

III B.Tech II Semester

COURSE	POWER SYSTEMS AND SIMULATION	CATEGORY	L-T-P	CREDITS
CODE –	LAB	PCC	0-0-3	1.5
R2011XXYY				

Pre-requisite:

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Estimate the sequence impedances of 3-phase Transformer and Alternators	3
CO2	Evaluate the performance of transmission lines	3
CO3	Analyse and simulate power flow methods in power systems	4
CO4	Analyse and simulate the performance of PI controller for load frequency control.	4
CO5	Analyse and simulate stability studies of power systems	4

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2	3	1	-	-	-	-	-	-	3	3	2
CO2	2	3	3	2	3	1	-	-	-	-	-	-	3	3	2
CO3	2	3	3	2	3	1	-	-	-	-	-	-	3	3	2
CO4	2	3	3	2	3	1	-	-	-	-	-	-	3	3	2
CO5	2	3	3	2	3	1	-	-	-	-	-	-	3	3	2

S No	CONTENTS	Contact							
3. 110	Any of 5 experiments are to be conducted from each section:	Hours							
	Section I: Power Systems Lab:								
1.	Estimation of sequence impedances of 3-phase Transformer								
2.	Estimation of sequence impedances of 3-phase Alternator by Fault Analysis								
3.	Estimation of sequence impedances of 3-phase Alternator by Direct method								
4.	Estimation of ABCD parameters on transmission line model								
5.	Performance of long transmission line without compensation								
6.	Performance of long transmission line with shunt compensation								
7.	Analyze the Ferranti effect on long transmission line								
	Section II: Simulation Lab								
8.	Determination of Y _{bus} using direct inspection method								
9.	Load flow solution of a power system network using Gauss-Seidel method								
10	Load flow solution of a power system network using Newton Raphson								
10.	method (Polar)								
11.	Formation of Z _{bus} by building algorithm.								
12.	Economic load dispatch with & without losses								
12	Load frequency control of a two area Power System without & with PI								
15.	controller								
14	Transient Stability analysis of single machine connected to an infinite bus								
14.	(SMIB) using equal area criterion.								

III B.Tech II Semester

COURSE	SKILL ADVANCED COURSE –	CATEGORY	L-T-P	CREDITS
R2011XXYY	HIGH VOLTAGE LAB	SC	0-0-4	2

Pre-requisite: Concepts of High Voltage Engineering

Course Outcomes: At the end of the course - student will be able to

		Knowledge
		Level (K)#
CO1	Analyse the breakdown characteristics of uniform and non uniform fields.	
CO2	Measure leakage current and insulation resistance of polypropylene scale and rope	
CO3	Measure leakage current and breakdown voltage of pin and suspension insulator.	
CO4	Analyse breakdown voltage of transformer oil and calibrate the Tong tester	
CO5	Analyse voltage distribution and impact of lightning impulse voltage on insulator	
	string.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2		2	2	1			2	1	1	2	3
CO2	2	2	3	2		2	2	1			2	2	1	2	3
CO3	2	3	3	2		2	2	1			1	2	1	2	3
CO4	2	2	2	2		2	2	1			2	1	1	2	3
CO5	3	3	2	2		2	2	1			1	2	2	2	2

(Please fill the above with Levels of Correlation - viz. - L-1 - M-2 - H-3)

S.No

CONTENTS

		Hours
	List of Experiments:	
	Any TEN of the following Experiments are to be conducted	
1.	Millivolt drop test and Tong tester calibration	
2.	Breakdown characteristics of sphere-sphere gap	
3.	Measurement of leakage current and breakdown voltage of pin insulator	
4.	Breakdown test of transformer oil	
5.	Breakdown characteristics of rod-rod gap	
6.	Measurement of leakage current and insulation resistance of polypropylene scale	
7.	Measurement of leakage current and insulation resistance of polypropylene rope	
8.	Breakdown characteristics of plane-rod-gap	
9.	Measurement of leakage current and breakdown voltage of suspension insulator	
10.	Breakdown characteristics of point-sphere gap	
11.	Measurement of voltage distribution for suspension insulator string	
12.	Lightning impulse testing on insulator string	

III B.Tech II Semester

CODE - R2011XXYYRESEARCH METHODOLOGICHILGORIL-14CHILGORIMC2-0-00

Pre-requisite:

Course Outcomes: At the end of the course - student will be able to

	Knowledge Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															

CO6								

(Please fill the above with Levels of Correlation - viz. - L-1 - M-2 - H-3)

UNIT	CONTENTS	Contact Hours
Note	: Collect the syllabus from Concerned BOS	
	Total	

Text books and Reference Books:

IV B.Tech I Semester

Pre-requisite: Mathematics and concepts of filters.

Course Outcomes: After the completion of the course the student should be able to:

Level (K)#

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1									1	2		
CO2	3	2	2	1								3	2		
CO3	3	3	3	3								2	3		
CO4	3	3	3	2								2	3		
CO5	2	1	1	1								2	1		

(Please fill the above with Levels of Correlation - viz. - L-1 - M-2 - H-3)

UNIT	CONTENTS	Contact Hours
UNIT -	Introduction	110015
1	Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Interest Introduction Interest Internation Interna	
UNIT - 2	Discrete Fourier Transforms and FFT Algorithms	
	Discrete Fourier Series representation of periodic sequences -Properties of Discrete Fourier Series - Discrete Fourier transforms: Properties of DFT - linear filtering methods based on DFT - Fast Fourier transforms (FFT) - Radix-2 decimation in time and decimation in frequency FFT Algorithms - Inverse FFT.	
UNIT –	Design and Realizations of IIR Digital Filters	
3	Analog filter approximations – Butter worth and Chebyshev - Design of IIR Digital filters from analog filters - Design Examples. Analog and Digital frequency transformations. Basic structures of IIR systems – Direct-Form Structures - Transposed Structures - Cascade-Form Structures - Parallel-Form Structures Lattice and Lattice-Ladder Structures.	
UNIT –	Design and Realizations of FIR Digital Filters	
4	Characteristics of FIR Filters with Linear Phase - Frequency Response of Linear Phase FIR Filters - Design of FIR Digital Filters using Window Techniques and Frequency Sampling technique - Comparison of IIR & FIR filters. Basic structures of FIR systems – Direct-Form Structure - Cascade-Form Structures Linear Phase Realizations - Lattice structures.	
UNIT –	Multirate Digital Signal Processing	
5	Introduction-Decimation –Interpolation-Sampling Rate Conversion by a Rational Factor-Implementation of sampling rate converters-Applications of Multirate Signal Processing-Digital Filter Banks.	
	Total	

Text Books:

- 1. Digital Signal Processing Principles Algorithms and Applications: John G. Proakis Dimitris G.Manolakis 4th Edition Pearson Education / PHI 2007.
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer PHI.
- 3. Digital Signal Processing: A Computer based approach. Sanjit K Mitra 4th Edition TMH 2014.

Reference Books:

- 1. Digital Signal Processing: Andreas Antoniou TATA McGraw Hill 2006
- 2. Digital Signal Processing: MH Hayes Schaum's Outlines TATA Mc-Graw Hill 2007.
- 3. DSP Primer C. Britton Rorabaugh Tata McGraw Hill 2005.
- 4. Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling Sandra L. Harris Thomson 2007.
- 5. Digital Signal Processing Alan V. Oppenheim Ronald W. Schafer PHI Ed. 2006.
- Digital Signal Processing K Raja Rajeswari 1st edition I.K. International Publishing -House - 2014.

IV B.Tech I Semester

COURSE CODE - R2011XXYYLINEAR IC APPLICATIONS (Professional Elective –III)	CATEGORY	L-T-P	CREDITS
	PEC	3-0-0	3

Pre-requisite: Network Theory, Electronic Devices and Circuits, Electronic Circuit Analysis

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)#
CO1	Analyse the Differential Amplifier with Discrete components	L4
CO2	Describe the Op-Amp and internal Circuitry: 555 Timer, PLL	L2
CO3	Discuss the Applications of Operational amplifier: 555 Timer, PLL	L2
CO4	Design the Active filters using Operational Amplifier	L5
CO5	Use the Op-Amp in A to D & D to A Converters	L3

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	2	-	-	-	-	-	-	-	3	2	
CO2	3	1	2	-	-	-	-	-	-	-	-	-	2	2	1
CO3	2	-	-	2	-	-	-	-	-	-	-	-		2	1
CO4	2	2	-	3	-	-	-	-	-	-	-	-	2		1
CO5	3	-	-	-	1	-	-	-	-	-	-	-	2	2	1

Unit	Contents	Hours
Unit – 1	Integrated Circuits:	9 hrs
	Differential Amplifier- DC and AC analysis of (i) Dual input Balanced output	

	Configuration, (ii) Dual Input Unbalanced Output, (iii)Single Ended Input -	
	Balanced Output (iv) Single Ended Input - un Balanced Output, Cascade	
	Differential Amplifier Stages, Level translator.	
	(Text Book: Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1993)	
	Operational Amplifier:	
	Introduction, Basic information of Op-Amp, Ideal Operational Amplifier,	
	Op-Amp internal Circuit, Examples of IC Op-Amps, FET Operational	
	Amplifier (Linear Integrated Circuits - D. Roy Choudhury, New Age	
	International (p) Ltd, 2nd Edition,2003)	
	Block Diagram Representation of Typical Op-Amp, Analysis of Typical Op-	
	Amp Equivalent Circuit(only MC1435)	
	(Text Book: Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1993)	
	OP-Amps Characteristics: Introduction, DC and AC characteristics,	
	741 op-amp & its features.	
Unit – 2	OP-AMPS Applications: Introduction, Basic Op-Amp Applications,	9 hrs
	Instrumentation Amplifier, AC Amplifier, V to I and I to V Converter, Sample	
	and Hold Circuit, Log and Antilog Amplifier, Multiplier and Divider,	
	Differentiator, integrator. (Linear Integrated Circuits - D. Roy Choudhury,	
	New Age International (p) Ltd, 2nd Edition, 2003)	
	Comparators and Waveform Generators:	
	Introduction, Comparator, Square Wave Generator, Monostable Multivibrator,	
	Triangular Wave Generator, Sine Wave Generators. (Linear Integrated Circuits	
	– D. Roy Choudhury, New Age International (p) Ltd, 2nd Edition,2003)	
Unit – 3	Active Filters:	9 hrs
	Design & Analysis of Butterworth active filters – 1st order, 2nd order LPF,	
	HPF filters. Band pass, Band reject and all pass filters. (Linear Integrated	
	Circuits – D. Roy Choudhury, New Age International (p) Ltd, 2nd	
	Edition,2003)	
Unit – 4	Timers: Introduction to 555 timer, functional diagram, Monostable and	9 hrs
	Astable operations and applications, Schmitt Trigger.	
	Phase Locked Loops: Introduction, block schematic, principles and	
	description of individual blocks, 565 PLL, Applications of PLL – frequency	
	multiplication, frequency translation, AM, FM & FSK demodulators.	
	Applications of VCO (566) (Linear Integrated Circuits – D. Roy Choudhury,	
TT '4 E	New Age International (p) Ltd, 2nd Edition,2003)	
Unit – 5	Digital To Analog And Analog To Digital Converters: Introduction, basic	9 hrs
	DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R	
	DAC, A-D Converters – parallel Comparator type ADC, counter type ADC,	
	successive approximation ADC and dual slope ADC.DAC and ADC	
	Specifications. (Linear Integrated Circuits – D. Roy Choudhury, New Age	
	International (n) Ltd. 2nd Edition 2003)	

Total 45 hrs

Text Books:

- 1. Linear Integrated Circuits D. Roy Choudhury, New Age International (p) Ltd, 2nd Edition 2003.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI, 1993.

References Books:

- Operational Amplifiers & Linear Integrated Circuits –Sanjay Sharma ;SK Kataria&Sons;2nd Edition,2010
- 2. Design with Operational Amplifiers & Analog Integrated Circuits Sergio Franco, McGraw Hill, 1988.
- 3. OP AMPS and Linear Integrated Circuits concepts and Applications, James M Fiore, Cenage Learning India Ltd.
- 4. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin& Fredrick Driscoll, PHI,6th Edition.
- 5. Operational Amplifiers & Linear ICs David A Bell, Oxford Uni. Press, 3rd Edition.
- 6. Operational Amplifiers–C.G. Clayton, Butterworth & Company Publ. Ltd./Elsevier, 1971.

IV B.Tech I Semester

COURSE CODE – R2011XXYY	PROGRAMMABLE LOGIC CONTROLLERS & ITS APPLICATIONS	CATEGORY PEC	L-T-P 3-0-0	CREDITS 3
	(Professional Elective – III)			

Pre-requisite: Concepts of Digital Electronics - Microprocessors and PID controllers.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate I/O modules of PLC systems and ladder diagrams	
CO2	Demonstrate various types registers and programming instructions.	
CO3	Examine various types of PLC functions and its applications.	
CO4	Assess different data handling functions and its applications.	
CO5	Describe the analog operations and PID modules.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	3	-	-	-	-	-	3	2	3	1
CO2	3	2	2	1	2	3	-	-	-	-	-	2	2	3	1
CO3	3	2	2	1	2	2	-	-	-	-	-	-	2	3	1
CO4	3	2	2	1	2	2	-	-	-	-	-	-	2	3	1
CO5	3	2	2	1	2	3	-	-	-	-	-	3	2	3	1

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction to PLC systems:	
	I/O modules and interfacing - CPU processor - programming Equipment -	
	programming formats - construction of PLC ladder diagrams - Devices	
	connected to I/O Modules. Digital logic gates - programming in the Boolean	
	algebra system - conversion examples Ladder Diagrams for process control:	
	Ladder diagrams & sequence listings - ladder diagram construction and	
	flowchart for spray process system.	
UNIT - 2	PLC Programming: Input instructions - outputs - operational procedures -	
	programming examples using contacts and coils. Drill press operation.	
	PLC Registers: Characteristics of Registers - module addressing - holding	
	registers - Input Registers - Output Registers.	
UNIT - 3	PLC Functions: Timer functions & Industrial applications - counters -	
	counter function industrial applications - Arithmetic functions - Number	
	comparison functions - number conversion functions.	
UNIT - 4	Data Handling functions: SKIP - Master control Relay - Jump - Move -	
	FIFO - FAL - ONS - CLR & Sweep functions and their applications. Bit	
	Pattern and changing a bit shift register - sequence functions and applications	
	- controlling of two-axis & three axis Robots with PLC - Matrix functions.	
UNIT - 5	Analog PLC operation: Analog modules & systems - Analog signal	
	processing - Multi bit Data Processing - Analog output Application Examples	
	- PID principles - position indicator with PID control - PID Modules - PID	
	tuning - PID functions.	
	Total	

Textbooks:

- 1. Programmable Logic Controllers- Principles and Applications by John W. Webb & Ronald A. Reiss Fifth Edition PHI
- 2. Programmable Logic Controllers- Programming Method and Applications –JR.Hackworth &F.D Hackworth Jr. –Pearson 2004

Reference Books:

- 1. Introduction to Programmable Logic Controllers- Gary A. Dunning 3rd edition Cengage Learning 2005.
- 2. Programmable Logic Controllers W.Bolton 5th Edition Elsevier publisher 2009.

IV B.Tech I Semester

COURSE CODE – R2011XXYY	OPTIMIZATION TECHNIQUES (Professional Elective –III)	CATEGORY PEC	L-T-P 3-0-0	CREDITS 3
-------------------------------	--	-----------------	----------------	--------------

Pre-requisite: Basics on Mathematical Methods

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	State and formulate the optimization problem without and with constraints, also	
	apply classical optimization techniques to minimize or maximize a multi-variable	
	objective function, without or with constraints and arrive at an optimal solution.	
CO2	Formulate a mathematical model and apply linear programming technique by using	
	Simplex method. Also extend the concept of dual Simplex method for optimal	
	solutions.	
CO3	Formulate a mathematical model and apply non-linear programming techniques for	
	unconstrained and constrained case studies.	
CO4	Solve transportation and assignment problem by using Linear programming	
	Simplex method.	
CO5	Formulate and apply Dynamic programming technique to inventory control,	
	production planning, engineering design problems etc. to reach a final optimal	
	solution from the current optimal solution.	
# D aga	d on suggested Powiged PTI	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2		2								2	3	2
CO2	2	2	2		2								2	3	2

CO3	3	2	3	1	2	 	 	 	 2	3	2
CO4	2	2	2	2	1	 	 	 	 2	3	2
CO5	2	2	2		2	 	 	 	 2	3	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction to Optimization Techniques	
	Statement of an Optimization problem - design vector - design constraints -	
	constraint surface - objective function - objective function surfaces -	
	classification of Optimization problems.	
	Classical Optimization Techniques	
	Single variable Optimization – multi variable Optimization without constraints	
	- necessary and sufficient conditions for minimum/maximum - multivariable	
	Optimization with equality constraints. Solution by method of Lagrange	
	multipliers – multivariable Optimization with inequality constraints – Kuhn –	
	Tucker conditions.	
UNIT –	Linear Programming	
2	Standard form of a linear programming problem – geometry of linear	
	programming problems – definitions and theorems – solution of a system of	
	linear simultaneous equations – pivotal reduction of a general system of	
	equations – motivation to the simplex method – simplex algorithm - Duality in	
	Linear Programming – Dual Simplex method.	
UNIT –	Nonlinear Programming	
3	Unconstrained cases - One – dimensional minimization methods:	
	Classification - Fibonacci method and Quadratic interpolation method -	
	Univariate method - Powell's method and steepest descent method.	
	Constrained cases - Characteristics of a constrained problem - Classification -	
	Basic approach of Penalty Function method; Basic approaches of Interior and	
	Exterior penalty function methods.	
UNIT –	Transportation Problem	
4	Finding initial basic feasible solution by north – west corner rule - least cost	
	method and Vogel's approximation method – testing for optimality of balanced	
	transportation problems – Special cases in transportation problem.	
0NII – 5	Dynamic Programming	
5	Dynamic programming multistage decision processes – types – concept of sub	
	opumization and the principle of optimality – computational procedure in $\frac{1}{2}$	
	aynamic programming – examples illustrating the calculus method of solution -	
	examples mustrating the tabular method of solution.	
	Total	

Text Books:

- 1. "Engineering optimization: Theory and practice"-by S. S.Rao New Age International (P) Limited 3rd edition 1998.
- 2. "Introductory Operations Research" by H.S. Kasene & K.D. Kumar Springer (India) 2013.

Reference Books:

- 1. "Optimization Methods in Operations Research and systems Analysis" by K.V. Mital and C. Mohan New Age International (P) Limited Publishers 3rd edition 1996.
- 2. Operations Research by Dr. S.D.Sharma Kedarnath Ramnath & Co 2012.
- 3. "Operations Research: An Introduction" by H.A.Taha PHI pvt. Ltd. 6th edition
- 4. Linear Programming-by G.Hadley.

IV B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	OBJECT ORIENTED PROGRAMMING	PEC	3-0-0	3
R2011XXYY	THROUGH JAVA			
	(Professional Elective –IV)			

Pre-requisite: Programming Skills

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate basic concepts of JAVA.	
CO2	Write java programming using classes and objects.	
CO3	Implement inheritance and exception handling concepts in JAVA.	
CO4	Analyze multithreading application in JAVA.	
CO5	Create JAVA Applet program and analyze various AWT controls.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2		3	-	-	-	-	-	1	1	2	3	2
CO2	3	2	2		2	-	-	-	-	-	1	1	2	3	2
CO3	3	2	2		2	-	-	-	-	-	1	1	2	3	2
CO4	3	3	2		3	-	-	-	-	-	1	1	2	3	2
CO5	3	3	2		3	-	-	-	-	-	1	1	2	3	2

UNIT	CONTENTS	Contact
		Hours
UNIT –	Introduction to JAVA:	
1	Introduction to OOP - procedural programming language and object oriented	
	language - principles of OOP - applications of OOP - history of java - java	
	features - JVM - program structure.	
	Variables - primitive data types - identifiers - literals - operators -	
	expressions - precedence rules and associativity - primitive type conversion	
	and casting - flow of control.	
UNIT –	Objects and Classes:	
2	Classes and objects - class declaration - creating objects - methods -	
	constructors and constructor overloading - garbage collector - importance of	
	static keyword and examples - this keyword - arrays - command line	
	arguments - nested classes.	
UNIT –	Inheritance:	
3	Inheritance - types of inheritance - super keyword - final keyword -	
	overriding and abstract class.	
	Interfaces -creating the packages - using packages - importance of	
	CLASSPATH and java.lang package.	
	Exception handling - importance of try - catch - throw - throws and finally	
	block - user-defined exceptions - Assertions.	
UNIT –	Multithreading:	
4	Introduction - thread life cycle - creation of threads - thread priorities -	
	thread synchronization - communication between threads. Reading data from	
	files and writing data to files - random access file.	
UNIT –	Applets and AWT Classes:	
5	Applet class - Applet structure - Applet life cycle - sample Applet programs.	
	Event handling: event delegation model - sources of event - Event Listeners	
	- adapter classes - inner classes.	
	AWT: introduction - components and containers - Button - Label -	
	Checkbox - Radio Buttons - List Boxes - Choice Boxes - Container class -	
	Layouts - Menu and Scrollbar.	
	Total	

Text Books:

- 1. The complete Reference Java 8th edition Herbert Schildt TMH.
- 2. Programming in JAVA Sachin Malhotra Saurabh Choudary Oxford.2013
- 3. Introduction to java programming 7th edition by Y Daniel Liang Pearson.

Reference Books:

- 1. "Object-Oriented Programming and Java" By <u>Danny Poo</u> <u>Derek Kiong</u> <u>Swarnalatha</u> <u>Ashok</u> - <u>Springer London</u> - 2008.
- 2. "Object Oriented Programming with Java" by <u>M. T. Somashekara</u> <u>D. S. Guru</u> <u>K. S.</u> <u>Manjunatha</u> - <u>Prentice Hall India Pvt. - Limited</u> - 2017.

IV B.Tech I Semester

COURSE	DATA BASE MANAGEMENT	CATEGORY	L-T-P	CREDITS
CODE –	SYSTEMS	PEC	3-0-0	3
R2011XXYY	(Professional Elective –IV)			

Pre-requisite: Programming skills - Linear Algebra - Data Structures.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Describe a relational database and object-oriented database.	
CO2	Create - maintain and manipulate a relational database using SQL	
CO3	Develop ER model and normalization for database design.	
CO4	Examine issues in data storage and query processing and can formulate appropriate solutions.	
CO5	Analyse the role and issues in management of data and Design database system for a given real world problem	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2		1								1	1	1
CO2	3	2	2		1								1	1	1
CO3	2	2	2		1								1	1	1
CO4	2	2	2		1								1	1	1
CO5	2	2	2		1								1	1	1

(Please fill the above with Levels of Correlation - viz. - L-1 - M-2 - H-3)

UNIT

CONTENTS

Contact

		Hours
UNIT –	An Overview of Database Management	
1	Introduction- Definition of Database and Database System - Need of	
	Database- Data Independence- Relation Systems and Others- Summary.	
	Database system architecture - Introduction - Three Levels of Architecture -	
	External Level - Conceptual Level- Internal Level - Mapping - Database	
	Administrator - Database Management Systems Client/Server Architecture.	
UNIT - 2	Entity-Relationship models & diagrams	
	The E/R Models - The Relational Model - Relational Calculus - Introduction	
	to Database Design - Database Design and ER Diagrams-Entities Attributes -	
	and Entity Sets-Relationship and Relationship Sets-Conceptual Design With	
	the ER Models - The Relational Model Integrity Constraints Over Relations-	
	Key Constraints - Foreign Key Constraints-General Constraints - Relational	
	Algebra and Calculus - Relational Algebra- Selection and Projection- Set	
	Operation - Renaming - Joins- Division- More Examples of Queries -	
	Relational Calculus - Tuple Relational Calculus- Domain Relational Calculus.	
UNIT –	Queries - Constraints - Triggers:	
3	The Form of Basic SQL Query - Union - Intersect - and Except - Nested	
	Queries - Aggregate Operators - Null Values - Complex Integrity	
	Constraints in SQL - Triggers and Active Database.	
	Schema Refinement (Normalization):	
	Purpose of Normalization or schema refinement - concept of functional	
	dependency - normal forms based on functional dependency(1NF - 2NF and	
	3 NF) - concept of surrogate key - Boyce-codd normal form(BCNF) -	
	Lossless join and dependency preserving decomposition - Fourth normal	
	form(4NF).	
UNIT –	Transaction Management and Concurrency Control	
4	Transaction - properties of transactions - transaction log - and transaction	
	management with SQL using commit rollback and save point.	
	Concurrency control for lost updates - uncommitted data - inconsistent	
	retrievals and the Scheduler. Concurrency control with locking methods : lock	
	granularity - lock types - two phase locking for ensuring serializability -	
	deadlocks - Concurrency control with time stamp ordering : Wait/Die and	
	Wound/Wait Schemes - Database Recovery management : Iransaction	
TINIT	recovery.	
0NII - 5	Overview of Storages and Indexing	
5	Data on External Storage- File Organization and Indexing –Clustered Indexing	
	- Primary and Secondary Indexes - Index Data Structures - Hash-Based	
	Indexing – Tree-Based Indexing - Comparison of File Organization.	
	Total	

Text Books:

- 1. Introduction to Database Systems CJ Date Pearson 8th edition.
- 2. Data base Management Systems Raghurama Krishnan Johannes Gehrke Tata McGraw Hill 3rd Edition.
- 3. Database Systems The Complete Book H G Molina J D Ullman J Widom Pearson Education 2008.

References Books:

- 1. Data base Systems design Implementation and Management Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems Elmasri Navrate Pearson Education 2008.

IV B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE – R2011XXYY	CLOUD COMPUTING (Professional Elective –IV)	PEC	3-0-0	3

Pre-requisite: Basics of Data Base Management Systems.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate the key dimensions of the challenge of Cloud Computing	
CO2	Assessment of the economics - financial - and technological implications for	
	selecting cloud computing for own organization	
CO3	Assessing the financial - technological - and organizational capacity of	
	employer's for actively initiating and installing cloud-based applications.	
CO4	Assessment of own organizations' needs for capacity building and training in	
	cloud computing-related IT areas	
CO5	Analyse the necessity of cloud computing in various storage systems.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2	2	2								2	1	1
CO2			2	3	3								2	1	1
CO3			1	3	3								2	1	1
CO4	1	2	2	2	2								2	1	1
CO5		1	2	2	3								2	1	1

UNIT	CONTENTS	Contact Hours
UNIT – 1	Systems Modelling - Clustering and virtualization Scalable Computing over the Internet - Technologies for Network based systems - System models for Distributed and Cloud Computing - Software environments for distributed systems and clouds - Performance - Security And Energy Efficiency.	
UNIT – 2	Virtual Machines and Virtualization of Clusters and Data Centers Implementation Levels of Virtualization - Virtualization Structures/ Tools and mechanisms - Virtualization of CPU - Memory and I/O Devices - Virtual Clusters and Resource Management - Virtualization for Data Center Automation.	
UNIT – 3	Cloud Platform Architecture Cloud Computing and service Models - Architectural Design of Compute and Storage Clouds - Public Cloud Platforms - Inter Cloud Resource Management - Cloud Security and Trust Management. Service Oriented Architecture - Message Oriented Middleware. Cloud Programming and Software Environments Features of Cloud and Grid Platforms - Parallel & Distributed Programming Paradigms - Programming Support of Google App Engine - Programming on Amazon AWS and Microsoft Azure - Emerging Cloud Software Environments.	
UNIT – 4	Cloud Resource Management and Scheduling Policies and Mechanisms for Resource Management Applications of Control Theory to Task Scheduling on a Cloud - Stability of a Two Level Resource Allocation Architecture - Feedback Control Based on Dynamic Thresholds. Coordination of Specialized Autonomic Performance Managers - Resource Bundling - Scheduling Algorithms for Computing Clouds - Fair Queuing - Start Time Fair Queuing - Borrowed Virtual Time - Cloud Scheduling Subject to Deadlines - Scheduling MapReduce Applications Subject to Deadlines.	
UNIT – 5	Storage Systems Evolution of Storage Technology - Storage Models - File Systems And Database - Distributed File Systems - General Parallel File Systems. Google File System. Apache Hadoop - Big Table - Megastore - Amazon Simple Storage Service (S3)	

Text Books:

- 1. Distributed and Cloud Computing Kai Hwang Geoffry C. Fox Jack J. Dongarra MK Elsevier 2011.
- 2. Cloud Computing Theory and Practice Dan C Marinescu MK Elsevier 2013.
- 3. Cloud Computing A Hands on approach Arshadeep Bahga Vijay Madisetti University Press 2014.

Reference Books:

- 1. Cloud Computing A Practical Approach Anthony T Velte Toby J Velte Robert Elsenpeter Tata McGraw Hill 2009.
- 2. Mastering Cloud Computing Foundations and Application Programming Raj Kumar Buyya Christen vecctiola S Tammaraiselvi MK Elsevier 2013.

IV B.Tech I Semester

COURSE	OPERATING SYSTEMS	CATEGORY	L-T-P	CREDITS
CODE –		PEC	3-0-0	3
R2011XXYY	(Professional Elective –IV)			

Pre-requisite: Concepts of Computer programming - Data Structures - Computer Organization.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
C01	Design various Scheduling algorithms.	
CO2	Apply the principles of concurrency and design deadlock - prevention and avoidance algorithms.	
CO3	Compare and contrast various memory management schemes.	
CO4	Design and Implement a prototype file systems.	
CO5	Analyse administrative tasks on Linux Servers and introduction to Android Operating System	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2											1	1	1	1
CO2												1	1	1	1
CO3	2	1	3	1								1	1	1	1
CO4	2		2									1	1	1	1
CO5					3							1	1	1	1

UNIT	CONTENTS	Contact
LINIT -	Introduction to Operating System and Concept Process Management	nours
1	Types of operating systems - operating systems concepts - operating systems	
-	services - Introduction to System call - System call types Process concept -	
	The process - Process State Diagram - Process control block - Process	
	Scheduling- Scheduling Queues - Schedulers - Operations on Processes -	
	Interprocess Communication - Threading Issues - Scheduling-Basic Concepts	
	- Scheduling Criteria - Scheduling Algorithms.	
UNIT - 2	Memory Management	
	Swapping - Contiguous Memory Allocation - Paging - structure of the Page	
	Table - Segmentation.	
	Virtual Memory Management	
	Virtual Memory - Demand Paging - Page-Replacement Algorithms -	
	Thrashing.	
UNII – 2	Concurrency	
3	ProcessSynchronization - The Critical- Section Problem - Synchronization	
	Hardware - Semaphores - Classic Problems of Synchronization - Monitors -	
	Synchronization examples.	
	System Model Deadlock Characterization Deadlock Prevention	
	Detection and Avoidance - Recovery form Deadlock	
UNIT –	File system Interface	
4	The concept of a file - Access Methods - Directory structure - File system	
	mounting - file sharing - protection.	
	File System implementation- File system structure - allocation methods -	
	free-space management.	
	Mass-storage structure- overview of Mass-storage structure - Disk	
	scheduling - Device drivers.	
UNIT –	Linux System	
5	Components of LINUX - Interprocess Communication - Synchronisation -	
	Interrupt - Exception and System Call.	
	Android Software Platform	
	Android Architecture - Operating System Services - Android Runtime	
	Application Development - Application Structure - Application Process	
	management	
	Total	

Text Books:

- 1. Operating System Concepts Abraham Silberschatz Peter Baer Galvin and Greg Gagne 9th Edition John Wiley and Sons Inc. 2012.
- 2. Operating Systems Internals and Design Principles William Stallings 7th Edition -

Prentice Hall - 2011.

3. Operating Systems-S Halder - Alex A Aravind Pearson Education Second Edition 2016

References Books:

- 1. Modern Operating Systems Andrew S. Tanenbaum Second Edition Addison Wesley 2001.
- 2. Operating Systems: A Design-Oriented Approach Charles Crowley Tata Mc Graw Hill Education" 1996.
- 3. Operating Systems: A Concept-Based Approach D M Dhamdhere Second Edition Tata Mc Graw-Hill Education 2007.

IV B.Tech I Semester

COURSE CODE – R2011XXYY	POWER SYSTEM OPERATION AND CONTROL (Professional Elective – V)	CATEGORY PEC	L-T-P 3-0-0	CREDITS 3
-------------------------------	--	-----------------	----------------	--------------

Pre-requisite:

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Compute optimal load scheduling of Generators.	3
CO2	Formulate hydrothermal scheduling and unit commitment problem	3
CO3	Analyse effect of Load Frequency Control for single area systems	4
CO4	Analyse effect of Load Frequency Control for two area systems	4
CO5	Describe the effect of reactive power control for transmission lines.	3

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	1	3	1	-	-	-	-	-	-	3	3	3
CO2	1	3	3	1	2	1	-	-	-	-	-	-	3	3	3
CO3	1	2	3	1	2	1	-	-	-	-	-	-	3	3	3
CO4	1	2	3	1	2	1	-	-	-	-	-	-	3	3	3
CO5	1	1	2	1	2	1	-	-	-	-	-	-	3	2	3

|--|

		Hours
UNIT –	Economic Operation of Power Systems	
1	Optimal operation of Generators in Thermal power stations Heat rate curve	
	- Cost Curve - Incremental fuel and Production costs - Input-output	
	characteristics - Optimum generation allocation with line losses neglected -	
	Optimum generation allocation including the effect of transmission line losses –	
	Loss Coefficients – General transmission line loss formula.	
UNIT - 2	Hydrothermal Scheduling	
	Mathematical Formulation – Solution Technique.	
	Unit Commitment	
	Need for unit commitment – Constraints in unit commitment – Cost function	
	formulation – Solution methods – Priority ordering – Dynamic programming.	
UNIT –	Load Frequency Control-I	
3	Modelling of steam turbine – Generator – Mathematical modelling of speed	
	governing system – Transfer function – Necessity of keeping frequency	
	constant. Definitions of Control area – Single area control system – Block	
	diagram representation of an isolated power system – Steady state analysis –	
	Dynamic response – Uncontrolled case. Proportional plus Integral control of	
	single area and its block diagram representation – Steady state response.	
UNIT –	Load Frequency Control-II	
4	Block diagram development of Load Frequency Control of two area system	
	uncontrolled case and controlled case – Tie-line bias control – Load Frequency	
	Control and Economic dispatch control – State space model – optimal	
LINUT	parameter adjustment.	
UN11 – 5	Compensation in Power Systems	
3	Overview of Reactive Power control – Reactive Power compensation in	
	transmission systems – Advantages and disadvantages of different types of	
	compensating equipment for transmission systems – Load compensation –	
	Specifications of Ioad compensator – compensated transmission lines.	
	EACTS devices – Need of FACIS controllers – Types of	
	lotal	

Text Books:

- 1. Power Generation Operation and Control by Allen J Wood Bruce F WollenBerg 3rd Edition Wiley Publication 2014.
- 2. Electric Energy systems Theory by O.I.Elgerd Tata McGraw–hill Publishing Company Ltd. Second edition.
- 2. Modern Power System Analysis by I.J.Nagrath&D.P.Kothari Tata McGraw Hill Publishing Company Ltd 2nd edition.

Reference Books:

- 1. Power System Analysis and Stability by S.S.Vadhera Khanna Publications 4th edition 2005.
- 2. Power System Analysis by Grainger and Stevenson Tata McGraw Hill.
- 3. Power System Analysis by HadiSaadat – Tata McGraw–Hill 3rd edition 2010.
- 4. Power System stability & control Prabha Kundur TMH 1994.

IV B.Tech I Semester

COURSE CODE –	SWITCH MODE POWER CONVERSION	CATEGORY	L-T-P	CREDITS
R2011XXYY	(Professional Elective – V)	PEC	3-0-0	3

Pre-requisite: Power electronics - Control Systems.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Design and analyse the operation of non-isolated switch mode converters.	4
CO2	Analyze the operation of isolated switch mode converters.	4
CO3	Illustrate the operation and control of resonant converters.	3
CO4	Analyse the control schemes of converters and design transformer - inductor.	4
CO5	Model the converters and design controller for closed loop operation.	4

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	-	-	-	-	-	2	2	3	2	2
CO2	3	2	2	1	1	-	-	-	-	-	2	3	3	3	2
CO3	3	2	2	2	1	-	-	-	-	-	2	2	2	2	2
CO4	3	2	2	1	1	-	-	-	-	-	2	3	3	3	2
CO5	3	2	3	2	1	-	-	-	-	-	2	3	3	3	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact Hours
UNIT – 1	Non-Isolated Switch Mode Converters	

	Control of DC-DC converters: Buck converters - Boost converters - Buck-Boost	
	converter - CUK Converter - continuous and discontinuous operation -	
	Converter realization with non-ideal components.	
UNIT – 2	Isolated Switched Mode Converters	
	Forwarded converter - flyback converter - push-pull converter - half-bridge	
	converter - full bridge converter.	
UNIT – 3	Resonant Converters	
	Basic resonant circuit concepts - series resonant circuits - parallel resonant	
	circuits - zero current switching quasi-resonant buck converter - zero current	
	switching quasi-resonant boost converter - zero voltage switching quasi-resonant	
	buck converter - zero voltage switching quasi-resonant boost converter.	
UNIT – 4	Control Schemes of Resonant Converters	
	Voltage control - Current mode control - Current control mode instability.	
	Magnetic Design: Transformer design - inductor and capacitor design.	
UNIT – 5	Modelling of Converters and Controller Design Based On Linearization:	
	Formulation of large signal models for buck and boost converters using state	
	space analysis-derivation of average large signal model using circuit averaging	
	method-small signal model derivation- average switch modelling technique to	
	obtain small signal models of buck and boost converters- Transfer function of	
	converters-Controller design based on linearization.	
	Total	

Text Books:

- 1. Fundamentals of Power Electronics- Erickson Robert W. Maksimovic Dragan Springer 2011.
- 2. Power switching converters- Simon Ang Alejandro Oliva CRC Press 2010.
- 3. Elements of Power Electronics Philip T. Krein Oxford University press 2014.
- 4. Design of Magnetic Components for Switched Mode Power Converters- Z Umanand S.P. Bhat John Wiley & Sons Australia 1992.

Reference Books:

- Switching Power Supply Design- Abraham I. Pressman McGraw-Hill Ryerson Limited - 1991.
- 2. Power Electronics Issa Batareseh Jhon Wiley publications 2004.
- 3. Power Electronics: converters Applications & Design Mohan Undeland Robbins-Wiley publications.

IV B.Tech I Semester

COURSE CODE - R2011XXYYADVANCED CONTROL SYSTEMS (Professional Elective - V)CA	ATEGORY	L-T-P	CREDITS
	PEC	3-0-0	3

Pre-requisite: Concepts of Control Systems

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Analyse different canonical forms - solution of State equation.	
CO2	Design of control system using the pole placement technique is given after introducing the concept of controllability and observability.	
CO3	Analyze nonlinear system using describing function technique and phase plane analysis.	
CO4	Examine the stability analysis using Lyapunov method.	
CO5	Illustrate the Minimization of functional using calculus of variation - state and quadratic regulator problems.	
// D		

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2							1	2	2		2
CO2	3	2	2	2							1	2	2	2	1
CO3	2	2	2	2								2	2	1	2
CO4	2	2	2	2								2	2	1	1
CO5	3	2	1	2								2	2	2	2

UNIT	CONTENTS	Contact Hours
UNIT - 1	State Space Analysis State Space Representation – Canonical forms – Controllable canonical form – Observable canonical form - Jordan Canonical Form - Solution of state equation – State transition matrix.	
UNIT - 2	Controllability - Observability and Design of Pole Placement Tests for controllability and observability for continuous time systems – Time varying case – Minimum energy control – Time invariant case – Principle of duality – Controllability and observability form Jordan canonical form and other canonical forms – Effect of state feedback on controllability and observability – Design of state feedback control through pole placement.	

UNIT - 3	Nonlinear Systems	
	Introduction to nonlinear systems - Types of nonlinearities. Introduction to	
	phase-plane analysis - Singular points; Describing function - basic concepts -	
	Describing functions of non-linearities.	
UNIT - 4	Stability analysis by Lyapunov Method	
	Stability in the sense of Lyapunov – Lyapunov's stability and Lyapunov's	
	instability theorems – Direct method of Lyapunov for the linear and nonlinear	
	continuous time autonomous systems.	
UNIT - 5	Introduction to optimal control:	
	Minimization of functional of single function – Constrained minimization –	
	Minimum principle – Control variable inequality constraints – Control and	
	state variable inequality constraints –Euler lagrangine equation-Typical	
	optimal control performance measures-Optimal control based on quadratic	
	performance measures- Quadratic optimal regulator systems-State regulator	
	problems-output regulator problems - tracking problems.	
	Total	

Text Books:

- 1. Modern Control Engineering by K. Ogata Prentice Hall of India 3rd edition 1998.
- 2. Automatic Control Systems by B.C. Kuo Prentice Hall Publication.

Reference Books:

- 1. Modern Control System Theory by M. Gopal New Age International Publishers 2nd edition 1996
- 2. Control Systems Engineering by I.J. Nagarath and M.Gopal New Age International (P) Ltd.
- 3. Digital Control and State Variable Methods by M. Gopal Tata Mc Graw–Hill Companies 1997.
- 4. Systems and Control by Stainslaw H. Zak Oxford Press 2003.
- 5. Optimal control theory: an Introduction by Donald E.Kirk by Dover publications.

IV B.Tech I Semester

COURSE	IOT APPLICATIONS IN ELECTRICAL	CATEGORY	L-T-P	CREDITS
CODE –	ENGINEERING	FEC	3-0-0	3
R2011XXYY	(Professional Elective – V)			

Pre-requisite: Concepts of Computer Organisation - Computer Networking

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Adopt the various fundamentals - architectures and technologies of Internet of	
	Things.	
CO2	Develop various communication technologies used in the Internet of Things.	
CO3	Analyse the various device connectivity methods using web and internet in the	
	IoT environment.	
CO4	Compute various data acquisition methods - data handling using cloud for IoT	
	applications.	
CO5	Design the implementation of IoT from the case studies like Smart Home - Smart	
	city - etc.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	2								1	3	1
CO2	1		2	2	3								1	3	1
CO3	1			2	3							2	1	3	1
CO4	1			2	3							2	1	3	1
CO5	1		1	2	3							2	1	3	1

UNIT	CONTENTS						
		Hours					
UNIT - 1	The Internet of Things:						
	An Overview of Internet of Things (IoT) - IoT framework -Architecture -						
	Technology behind IoT - Sources of the IoT - M2M Communication -						
	Examples of IoT.						
UNIT - 2	Design Principles For Connected Devices:						
	Introduction -IoT/M2M systems - Layers and Designs Standardization -						
	Communication Technologies – Data Enrichment - Consolidation and Device						
	Management at Gateway – Ease of designing and affordability.						
UNIT - 3	Design Principles for the Web Connectivity:						
	Introduction - Web Communication protocols for Connected Devices -						
	Message Communication protocols for Connected Devices - Web						

	Connectivity for connected devices network.	
	Introduction to Internet Connectivity Principles - Internet connectivity -	
	Internet based communication – IP addressing in the IoT – Application Layer	
	Protocols: HTTP - HTTPS - FTP - Telnet - WAP (Wireless Application	
	Protocol).	
UNIT - 4	Data Acquiring - Organizing - Processing and Analytics	
	Introduction – Data Acquiring and Storage – Organizing the Data – Analytics.	
	Data Collection - Storage and Computing Using a Cloud Platform	
	Introduction - Cloud computing paradigm for data collection - storage and	
	computing - IoTas a service and Cloud Service Models - IoT cloudbased	
	services using the Xively (Pachube/COSM) - Nimbits and other platforms.	
UNIT - 5	Sensor Technology	
	Actuator - Sensor data communication protocols - Radio Frequency	
	Identification technology - Wireless Sensor Network Technology.	
	IoT application case studies: Smart Home - Smart Cities - Environment	
	monitoring and Agriculture practices.	
	Total	

Text Books:

1. Internet of Things: Architecture - Design Principles - Raj Kamal - McGraw Hill Education (India) Pvt. Limited - 2017.

Reference Books:

- 1. Designing the Internet of Things Adrian McEwen and Hakim Cassimally Wiley First Edition 2013.
- 2. Getting Started with the Internet of Things Cuno Pfister O'Reilly 2011.
- 3. Internet of Things: A Hands-on Approach Arshdeep Bahga and Vijay Madisetti 2014.

IV B.Tech I Semester

COURSE	BASICS OF MICROPROCESSORS AND	CATEGORY	L-T-P	CREDITS
CODE –	MICROCONTROLLERS	OEC	3-0-0	3
R2011XXYY	(Open Elective-III)			

Pre-requisite: Basics of Processors

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know the concepts of the Microprocessor capability in general and explore the	
	evaluation of microprocessors.	
CO2	Analyse the instruction sets - addressing modes - minimum and maximum modes	
	operations of 8086 Microprocessors	
CO3	Analyse the Microcontroller and interfacing capability	
CO4	Describe the architecture and interfacing of 8051 controller	
CO5	Know the concepts of PIC micro controller and its programming.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1							1	1	3	2	1
CO2	3	1	2	1								1	3	3	2
CO3	3	2	3	2	1							1	3	3	2
CO4	3	2	2	2	1							1	3	3	2
CO5	3	1	2	2	3						1	1	3	3	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction to Microprocessor Architecture	
	Introduction and evolution of Microprocessors - Architecture of 8086 -	
	Memory Organization of 8086 - Register Organization of 8086- Introduction	
	to 80286 - 80386 - 80486 and Pentium (brief description about architectural	
	advancements only).	
UNIT - 2	Minimum and Maximum Mode Operations	
	Instruction sets of 8086 - Addressing modes - Assembler directives - General	
	bus operation of 8086 – Minimum and Maximum mode operations of 8086 –	
	8086 Control signal interfacing – Read and write cycle timing diagrams.	
UNIT - 3	Microprocessors I/O Interfacing	
	8255 PPI- Architecture of 8255-Modes of operation - Interfacing I/O devices	

	to 8086 using 8255 – Interfacing A to D converters – Interfacing D to A	
	converters – Stepper motor interfacing– Static memory interfacing with 8086.	
UNIT - 4	8051 Microcontroller	
	Overview of 8051 Microcontroller – Architecture – Memory Organization –	
	Register set.	
UNIT - 5	8051 Interfacing and Applications	
	Instruction set – I/O ports and Interrupts – Timers and Counters – Serial	
	Communication – Interfacing of peripherals – Applications of microcontrollers.	
	Total	

Text Books:

- 1. Ray and Burchandi "Advanced Microprocessors and Interfacing" Tata McGraw–Hill 3rd edition 2006.
- 2. Kenneth J Ayala "The 8051 Microcontroller Architecture Programming and Applications" Thomson Publishers 2nd Edition.
- PIC Microcontroller and Embedded Systems using Assembly and C for PIC 18 -Muhammad Ali Mazidi - RolindD.Mckinay - Danny causey -Pearson Publisher 21st Impression.

Reference Books:

- 1. Microprocessors and Interfacing Douglas V Hall Mc-Graw Hill 2nd Edition.
- 2. R.S. Kaler "A Text book of Microprocessors and Micro Controllers" I.K. International Publishing House Pvt. Ltd.
- 3. Ajay V. Deshmukh "Microcontrollers Theory and Applications" Tata McGraw–Hill Companies –2005.
- 4. Ajit Pal "Microcontrollers Principles and Applications" PHI Learning Pvt Ltd 2011.

IV B.Tech I Semester

COURSE	FUNDAMENTALS OF UTILIZATION	CATEGORY	L-T-P	CREDITS
CODE –	OF ELECTRICAL ENERGY	OEC	3-0-0	3
R2011XXYY	(Open Elective –III)			

Pre-requisite: Basics of Electrical Engineering

Course Outcomes: After the completion of the course the student should be able to understand:

		Knowledge Level (K)#
CO1	Know the concepts of illumination and various illumination methods.	
CO2	Know about the resistance - induction and dielectric heating.	
CO3	Learn about the resistance and arc welding and welding equipment	
CO4	Know about the mechanisms - equipment and technology used in the electric traction.	
CO5	Differentiate the importance of various energy storage systems	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		1								1	3	3	1
CO2	3	3		1								1	3	3	1
CO3	3	3		1								1	3	3	1
CO4	3	3		2								1	3	3	1
CO5	3	3		1			1					1	3	3	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Illumination fundamentals	
	Introduction - terms used in illumination-Laws of illumination-Lux meter-	
	Sources of light.	
	Various Illumination Methods	
	Tungsten filament lamps and fluorescent lamps - Comparison -Basic	
	principles of light control- Types and design of lighting and flood lighting-	
	LED lighting - Energy conservation.	
UNIT - 2	Electric Heating	
	Advantages and methods of electric heating-Resistance heating induction	
	heating and dielectric heating.	

UNIT - 3	Electric Welding	
	Electric welding-Resistance and arc welding-Electric welding equipment-	
	Comparison between AC and DC Welding	
UNIT - 4	Electric Traction	
	System of electric traction and track electrification- Review of existing	
	electric traction systems in India- Special features of traction motor-	
	Mechanics of train movement-Speed-time curves for different services -	
	Trapezoidal and quadrilateral speed time curves. Calculations of tractive	
	effort- power -Specific energy consumption for given run-Effect of varying	
	acceleration and braking retardation–Adhesive weight and braking retardation	
	adhesive weight and coefficient of adhesion.	
UNIT - 5	Introduction to Energy Storage Systems	
	Need for energy storage - Types of energy storage-Thermal - electrical -	
	magnetic and chemical storage systems - Comparison of energy storage	
	technologies-Applications.	
	Total	

Text Books:

- Electrical Power Systems (Generation Transmission Distribution Protecection and Utilization of Electrical Energy) – Dr. S.L.Uppal and Prof. Sunil S.Rao – Khanna Publisher - 15th edition - 1987.
- 2. Electric Power Distribution A. S. Pabla McGrawHill 5th edition 2004.

Reference Books:

1. Generation Distribution and Utilization of Electrical Energy – C.L.Wadhwa- New Age International Publishers- revised 3rd edition.

IV B.Tech I Semester

COURSE	ELECTRICAL ESTIMATION AND	CATEGORY	L-T-P	CREDITS
CODE –	COSTING	OEC	3-0-0	3
R2011XXYY	(Open Elective – III)			

Pre-requisite: Basics of Power Systems

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Demonstrate the various electrical apparatus and their interconnections.	
CO2	Examine various components of electrical installations.	
CO3	Estimate the cost for installation of wiring for different types of building and small industries.	
CO4	Illustrate the components of electrical substations.	
CO5	Design suitable control circuit for starting of three phase induction motor and synchronous motor.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	1	-	-	-	-	-	1	2	2	1	2
CO2	3	1	2	1	2	-	-	-	-	-	1	2	2	1	1
CO3	2	2	1	2	2	-	-	-	-	-	2	1	2	2	2
CO4	3	1	1	2	2	-	-	-	-	-	1	2	2	1	1
CO5	2	2	2	2	2	-	-	-	-	-	1	2	2	1	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Electrical Symbols and Simple Electrical Circuits	
	Identification of electrical symbols - Electrical Diagrams - Methods of	
	representation of wiring diagrams - introduction to simple light and fan	
	circuits - system of connection of appliances and accessories.	
UNIT - 2	Design Considerations of Electrical Installations	
	Electric supply system - Three-phase four wire distribution system -	
	protection of electric installation against overload - short circuit and earth	
	fault - earthing - neutral and earth wire - types of loads - systems of wiring	
	- permissible of voltage drops and sizes of wires - estimating and costing of	
	electrical installations.	

UNIT - 3	Electrical Installation for Different Types of Buildings and Small									
	Industries									
	Electrical installations for electrical buildings - estimating and costing of									
	material - simple examples on electrical installation for residential buildings -									
	electrical installations for commercial buildings - electrical installation for									
	small industries-case study.									
UNIT - 4	Substations									
	Introduction - types of substations - outdoor substations-pole mounted type -									
	indoor substations-floor mounted type - simple examples on quantity									
	estimation-case study.									
UNIT - 5	Motor control circuits									
	Introduction to AC motors - starting of three phase squirrel cage induction									
	motors - starting of wound rotor motors - starting of synchronous motors -									
	contractor control circuit components - basic control circuits - motor									
	protection									
	Total									

Text Books:

1. Electrical Design and Estimation Costing - <u>K. B. Raina</u> and S.K.Bhattacharya – New Age International Publishers - 2007.

- 1. Electrical wiring estimating and costing S.L.Uppal and G.C.Garg Khanna publishers 6th edition 1987.
- 2. A course in electrical installation estimating and costing J.B.Gupta –Kataria SK & Sons 2013.

IV B.Tech I Semester

CODE -THINGSOEC3-0-03R2011XXYY(Open Elective - III)	CODE -THINGSOECR2011XXYY(Open Elective - III)
---	---

Pre-requisite: Basics of Computer Organisation - Computer Networking

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Adopt the various fundamentals architectures and technologies of Internet of	
	Things.	
CO2	Develop various communication technologies used in the Internet of Things.	
CO3	Analyse the various device connectivity methods using web and internet in the	
	IoT environment.	
CO4	Compute various data acquisition methods, data handling using cloud for IoT	
	applications.	
CO5	Analyse the implementation of IoT from the case studies like Smart Home, Smart	
	city, etc.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	2								1	3	1
CO2	1		2	2	3								1	3	1
CO3	1			2	3							2	1	3	1
CO4	1			2	3							2	1	3	1
CO5	1		1	2	3							2	1	3	1

UNIT	CONTENTS	Contact					
		Hours					
UNIT - 1	The Internet of Things:						
	An Overview of Internet of Things (IoT) – IoT framework –Architecture –						
	Technology behind IoT - Sources of the IoT - M2M Communication -						
	Examples of IoT.						
UNIT - 2	Design Principles For Connected Devices:						
	Introduction -IoT/M2M systems - Layers and Designs Standardization -						
	Communication Technologies – Data Enrichment - Consolidation and Device						
	Management at Gateway – Ease of designing and affordability.						
UNIT - 3	Design Principles for the Web Connectivity:						
	Introduction - Web Communication protocols for Connected Devices -						
	Message Communication protocols for Connected Devices - Web						

	Connectivity for connected devices network.	
	Introduction to Internet Connectivity Principles - Internet connectivity -	
	Internet based communication – IP addressing in the IoT – Application Layer	
	Protocols: HTTP - HTTPS - FTP - Telnet - WAP (Wireless Application	
	Protocol).	
UNIT - 4	Data Acquiring - Organizing - Processing and Analytics:	
	Introduction – Data Acquiring and Storage – Organizing the Data – Analytics.	
	Data Collection - Storage and Computing Using a Cloud Platform:	
	Introduction – Cloud computing paradigm for data collection - storage and	
	computing - IoTas a service and Cloud Service Models - IoT cloudbased	
	services using the Xively (Pachube/COSM) - Nimbits and other platforms.	
UNIT - 5	Sensor technology:	
	Actuator - Sensor data communication protocols - Radio Frequency	
	Identification technology - Wireless Sensor Network Technology.	
	IoT application case studies: Smart Home - Smart Cities - Environment	
	monitoring and Agriculture practices.	
	Total	

Text Books:

1. Internet of Things: Architecture - Design Principles - Raj Kamal - McGraw Hill Education (India) Pvt. Limited - 2017.

- 2. Designing the Internet of Things Adrian McEwen and Hakim Cassimally Wiley First Edition 2013.
- 3. Getting Started with the Internet of Things Cuno Pfister O'Reilly 2011.
- 4. Internet of Things: A Hands-on Approach Arshdeep Bahga and Vijay Madisetti 2014.

IV B.Tech I Semester

COURSE CODE – R2011XXYY	CONCEPTS OF POWER SYSTEM ENGINEERING (Open Elective – IV)	CATEGORY OEC	L-T-P 3-0-0	CREDITS 3
-	(open Elective TV)			

Pre-requisite: Basics of Power Systems

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Know the concepts of power generation by various types of power plants.	2
CO2	Learn about transmission line concepts and distribution systems schemes.	2
CO3	Learn about protection equipments and grounding methods of power system.	2
CO4	Know the economic aspects of electrical energy and their importance.	2
CO5	Know the importance of power factor improvement and voltage control in power systems.	3

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1	2	1	-	-	-	-	-	-	2	3	2
CO2	1	2	2	1	2	1	-	-	-	-	-	-	2	3	2
CO3	1	2	2	1	2	1	-	-	-	-	-	-	2	3	2
CO4	1	2	2	1	2	1	-	-	-	-	-	-	2	3	2
CO5	2	2	2	1	2	1	-	-	-	-	-	-	2	3	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Power Generation Concepts & Types	
	Generation and sources of Energy – working principle and Schematic diagram	
	approach of Thermal Power Plant – Hydro Power Plant - Nuclear Power Plant	
	– Gas Power Plants – Comparison between Power Plants.	
UNIT - 2	Transmission and Distribution Concepts	
	Types of Conductors Materials - Constants of Transmission Line -	
	Classification of Overhead Transmission Lines - Performance of Short	
	Transmission Lines – Simple Problems.	
	Basic concept of Sub Station – Distribution Systems – Connection Schemes of	
	Distribution Systems – Structure of Cables – Differences between Overhead &	
	Underground systems.	
UNIT - 3	Protection and Grounding	

	List of Faults – Basic concepts of fuse – Circuit Breakers – Relays – SF ₆									
	Circuit Breakers – Vacuum Circuit Breakers – Operation of Lightning Arrester									
	- Grounding and its advantages - Methods of Neutral Grounding: Resistance -									
	Reactance and Resonant Grounding – Numerical Problems.									
UNIT - 4	Economic Aspects									
	Definitions of Load - Load & Load Duration Curves - Load Factor - Demand									
	Factor – Utilization Factor - Loss Factor – Types of Tariff - Cost of Electrical									
	Energy – Expression for Cost of Electrical Energy – Numerical Problems									
UNIT - 5	Power Factor Improvement and Voltage Control									
	Power Factor - Effects and Causes of low Power Factor- Shunt & Series									
	Capacitor Compensation - Numerical Problems - Need of Voltage Control -									
	Types of Voltage regulating Devices.									
	Total									

Text Books:

1. Principles of Power System by V.K.Mehata - Rohit Mehata - S.Chand Publishers.

Reference Books:

1. Electrical Power Systems by C.L.Wadwa - New Age International Publishers.

IV B.Tech I Semester

COURSE CODE –	FUNDAMENTALS OF ELECTRIC VEHICLES	CATEGORY OEC	L-T-P 3-0-0	CREDITS 3
R2011XXYY	(Open Elective – IV)			
_				

Pre-requisite: Basics of Machines and Electronics.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate different types of electric vehicles.	
CO2	Select suitable power converters for EV applications.	
CO3	Design HEV configuration for a specific application.	
CO4	Choose an effective method for EV and HEV applications.	
CO5	Analyse a battery management system for EV and HEV.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1					3	3	2				3			
CO2	2	3	2	1		1	1	2	1				2	3	
CO3		3	3	3	2	1			2	2	3			2	
CO4	3	2	2	3	1	2	1			2	2			3	3
CO5	2		2		2	2						3	2	2	2

UNIT	CONTENTS	Contact Hours
UNIT - 1	Introduction	
	Fundamentals of vehicles - Components of conventional vehicles - drawbacks	
	of conventional vehicles - Need for electric vehicles - History of Electric	
	Vehicles - Types of Electric Vehicles - Advantages and applications of	
	Electric Vehicles.	
UNIT - 2	Components of Electric Vehicles	
	Main components of Electric Vehicles - Power Converters - Controller and	
	Electric Traction Motor – Rectifiers used in EVs – Bidirectional DC-DC	
	Converters – Voltage Source Inverters – PWM inverters used in EVs.	
UNIT - 3	Hybrid Electric Vehicles	
	Evolution of Hybrid Electric Vehicles – Advantages and Applications of Hybrid Electric Vehicles – Architecture of HEVs - Series and Parallel HEVs –	

	Complex HEVs – Range extended HEVs – Examples - Merits and Demerits.	
UNIT - 4	Motors for Electric Vehicles	
	Characteristics of traction drive - requirements of electric machines for EVs -	
	Different motors suitable for Electric and Hybrid Vehicles – Induction Motors	
	– Synchronous Motors – Permanent Magnetic Synchronous Motors –	
	Brushless DC Motors – Switched Reluctance Motors (Construction details and	
	working only)	
UNIT - 5	Energy Sources for Electric Vehicles	
	Batteries - Types of Batteries - Lithium-ion - Nickel-metal hydride - Lead-	
	acid - Comparison of Batteries - Battery Management System - Ultra	
	capacitors – Flywheels – Fuel Cell – it's working.	
	Total	

Text Books

- 1. Iqbal Hussein Electric and Hybrid Vehicles: Design Fundamentals CRC Press 2021.
- 2. Denton Tom. Electric and hybrid vehicles. Routledge 2020.

- 1. Kumar L. Ashok and S. Albert Alexander. Power Converters for Electric Vehicles. CRC Press 2020.
- 2. Chau Kwok Tong. Electric vehicle machines and drives: design analysis and application. John Wiley & Sons 2015.
- 3. Berg Helena. Batteries for electric vehicles: materials and electrochemistry. Cambridge university press 2015.

IV B.Tech I Semester

COURSE	INTRODUCTION TO MACHINE	CATEGORY	L-T-P	CREDITS
CODE –	LEARNING	OEC	3-0-0	3
R2011XXYY	(Open Elective – IV)			

Pre-requisite: Basics of Computer Networks - Linear Algebra - Probability - statistics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Develop the concepts of computational intelligence like machine learning.	
CO2	Adapt the skill to apply machine learning techniques to address the real time problems in different areas	
CO3	Analyse the various learning forms in ANN and its usage in machine learning application.	
CO4	Illustrate the essence of Bayesian learning	
CO5	Analyse the importance of Genetic Algorithm	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	1	-	-	-	-	-	-	-	3	1	2
CO2	3	3	3	2	1	-	-	-	-	-	-	-	3	1	2
CO3	3	3	2	2	1	-	1	-	-	-	-	-	3	1	2
CO4	3	2	2	1	2	-	-	-	-	-	-	-	3	1	2
CO5	3	3	2	2	2	-	-	-	-	-	-	-	3	1	2

UNIT	CONTENTS	Contact Hours
UNIT - 1	Introduction:	
	Towards Intelligent Machines - Well-posed learning problems - designing a learning system - Perspectives and issues in machine learning. Concept learning and the general to specific ordering – introduction - a concept learning task - concept learning as search - find-S: finding a maximally specific hypothesis - version spaces and the candidate elimination algorithm - remarks on version spaces and candidate elimination - inductive bias.	
UNIT - 2	Decision Tree Learning:	
	Introduction - decision tree representation - appropriate problems for decision	
	tree learning - the basic decision tree learning algorithm - hypothesis space	
	search in decision tree learning - inductive bias in decision tree learning -	

	issues in decision tree learning.	
UNIT - 3	Artificial Neural Networks:	
	Introduction - neural network representation - appropriate problems for	
	neural network learning - perceptions - multilayer networks and the back-	
	propagation algorithm.	
	Reinforcement Learning –	
	Introduction - the learning task - Q-learning - non-deterministic - rewards	
	and actions - temporal difference learning - generalizing from examples -	
	relationship to dynamic programming.	
UNIT - 4	Bayesian learning:	
	Introduction - Bayes theorem - Bayes theorem and concept learning -	
	Maximum Likelihood and least squared error hypotheses - maximum	
	likelihood hypotheses for predicting probabilities - minimum description	
	length principle - Bayes optimal classifier - Gibs algorithm - Naïve Bayes	
	classifier - an example: learning to classify text - Bayesian belief networks -	
	the EM algorithm.	
UNIT - 5	Genetic Algorithms:	
	Motivation - Genetic algorithms - an illustrative example - hypothesis space	
	search - genetic programming - models of evolution and learning -	
	parallelizing genetic algorithms.	
	Total	

Text Book:

1. Machine Learning – Tom M. Mitchell - - MGH

Reference Book:

1. Machine Learning: An Algorithmic Perspective - Stephen Marshland - Taylor & Francis

IV B.Tech I Semester

COURSE CODE – B2011XXVV	INTRODUCTION TO SMART GRID	CATEGORY OEC	L-T-P 3-0-0	CREDITS 3
	(Open Elective – IV)			

Pre-requisite: Basics of Renewable Energy

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Describe the concepts of smart grids and analyse the smart grid policies and	
	developments in smart grids.	
CO2	Develop concepts of smart grid technologies in hybrid electrical vehicles etc.	
CO3	Illustrate the concepts of smart substations - feeder automation - Battery Energy	
	storage systems etc.	
CO4	Analyse micro grids and distributed generation systems.	
CO5	Analyse the effect of power quality in smart grid and to understand latest	
	developments in ICT for smart grid.	
110		

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2										1	1	2
CO2	1	2	2										1	1	3
CO3	2	2		2	1								1	2	2
CO4	2	2		2									1	1	3
CO5	2	2		2	1								1	2	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction to Smart Grid	
	Evolution of Electric Grid - Concept of Smart Grid - Definitions - Need of	
	Smart Grid - Functions of Smart Grid - Opportunities & Barriers of Smart	
	Grid - Difference between conventional & smart grid - Concept of Resilient	
	& Self-Healing Grid - Present development & International policies on Smart	
	Grid. Case study of Smart Grid.	
UNIT - 2	Smart Grid Technologies: Part 1	
	Introduction to Smart Meters - Real Time Pricing - Smart Appliances -	
	Automatic Meter Reading(AMR) - Outage Management System(OMS) -	
	Plug in Hybrid Electric Vehicles(PHEV) - Vehicle to Grid - Smart Sensors -	
	Home & Building Automation - Phase Shifting Transformers - Net Metering.	

UNIT - 3	Smart Grid Technologies: Part 2	
	Smart Substations - Substation Automation - Feeder Automation. Geographic	
	Information System(GIS) - Intelligent Electronic Devices (IED) & their	
	application for monitoring & protection.	
	Smart storage like Battery Energy Storage Systems (BESS) - Super	
	Conducting Magnetic Energy Storage Systems (SMES) - Pumped Hydro -	
	Compressed Air Energy Storage (CAES) - Wide Area Measurement System	
	(WAMS) - Phase Measurement Unit (PMU).	
UNIT - 4	Micro grids and Distributed Energy Resources	
	Concept of micro grid - need & applications of microgrid - formation of	
	microgrid - Issues of interconnection - protection & control of microgrid -	
	Integration of renewable energy sources - Demand Response.	
UNIT - 5	Power Quality Management in Smart Grid	
	Power Quality & EMC in Smart Grid - Power Quality issues of Grid	
	connected Renewable Energy Sources - Power Quality Conditioners for Smart	
	Grid - Web based Power Quality monitoring - Power Quality Audit.	
	Information and Communication Technology for Smart Grid	
	Advanced Metering Infrastructure (AMI) - Home Area Network (HAN) -	
	Neighborhood Area Network (NAN) - Wide Area Network (WAN).	
	Total	

Text Books:

- 1. Integration of Green and Renewable Energy in Electric Power Systems by Ali Keyhani Mohammad N. Marwali Min Dai Wiley 2009.
- 2. The Smart Grid: Enabling Energy Efficiency and Demand Response by Clark W. Gellings Fairmont Press 2009.
- 3. Smart Grid: Technology and Applications by Janaka B. Ekanayake Nick Jenkins Kithsiri Liyanage Jianzhong Wu Akihiko Yokoyama Wiley publishers 2012.
- 4. Smart Grids by Jean-Claude Sabonnadière NouredineHadjsaïd Wiley publishers 2013.
- 5. Smart Power: Climate Changes the Smart Grid and the Future of Electric Utilities by Peter S. Fox Penner Island Press; 1st edition 8 Jun 2010.
- Microgrids and Active Distribution Networks by S. Chowdhury S. P. Chowdhury P. Crossley - Institution of Engineering and Technology - 30 Jun 2009

- 1. The Advanced Smart Grid: Edge Power Driving Sustainability:1 by Andres Carvallo John Cooper Artech House Publishers July 2011
- 2. Control and Automation of Electric Power Distribution Systems (Power Engineering) by James Northcote Green Robert G. Wilson CRC Press 2017.
- 3. Substation Automation (Power Electronics and Power Systems) by MladenKezunovic -Mark G. Adamiak - Alexander P. Apostolov - Jeffrey George Gilbert - Springer - 2010.
- Electrical Power System Quality by R. C. Dugan Mark F. McGranghan Surya Santoso -H. Wayne Beaty - McGraw Hill Publication - 2nd Edition.

IV B.Tech I Semester

COURSE CODE – R2011XXYY	UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY	CATEGORY HSMC	L-T-P 3-0-0	CREDITS 0
-------------------------------	--	------------------	----------------	--------------

Pre-requisite:

Course Outcomes: After the completion of the course the student should be able to:

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						2	3	3							
CO2			-	-		2	3	3							
CO3			-	-		2	3	3							
CO4			-	-		2	3	3							
CO5			-	-		2	3	3							
CO6			-	-		2	3	3							

UNIT	CONTENTS	Contact Hours				
Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education						
1. Purpos	e and motivation for the course, recapitulation from Universal Human Values-I					
2. Self-l Acce 3. Contin	Exploration—what is it? - Its content and process; 'Natural ptance' and Experiential Validation- as the process for self-exploration uous Happiness and Prosperity- A look at basic Human Aspirations					
4. Right u fulfilm	inderstanding, Relationship and Physical Facility- the basic requirements for tent of aspirations of every human being with their correct priority					
5. Unders scenari	tanding Happiness and Prosperity correctly- A critical appraisal of the current o					
6. Metho	d to fulfil the above human aspirations: understanding and living in harmony					

at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence

as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self- regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in allpervasive space
- 21. Holistic perception of harmony at all levels of existence.Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional ethics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. to discuss the conduct as an engineer or scientist etc.

Text Book:

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

4. MODE OF CONDUCT (L-T-P-C 2-1-0-3 or 2L: 1T:0P 3 credits)

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, selfreflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

5. ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example:

Assessment by faculty mentor: 10 marks Selfassessment: 10 marks Assessment by peers: 10 marks Socially relevant project/Group Activities/Assignments: 20 marks Semester End Examination: 50 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

6. OUTCOME OF THE COURSE:

By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

This is only an introductory foundationalinput. It would be desirable to follow it up by

- a) faculty-student or mentor-mentee programs throughout their time with the institution
- b) Higher level courses on human values in every aspect of living. E.g. as a professional

Text Books: 1. Reference Books:

IV B.Tech I Semester

COURSESKILLED ADVANCED COURSE –CODE –IOT APPLICATIONS IN ELECTRICALR2011XXYYENGINEERING LAB	CATEGORY SC	L-T-P 0-0-4	CREDITS 2
---	----------------	----------------	-----------

Pre-requisite: Concepts of Computer Organisation - Computer Networks.

Course Outcomes: At the end of the course - student will be able to

		Knowledge
		Level (K)#
CO1	Apply various technologies of Internet of Things to real time applications.	
CO2	Apply various communication technologies used in the Internet of Things.	
CO3	Demonstrate the devices using web and internet in the IoT environment.	
CO4	Develop IoT to study Smart Home - Smart city - etc.	
CO5	Apply various technologies of Internet of Things to real time applications.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2								1	3	1
CO2	2	2	2	2	3								1	3	1
CO3	2	2	2	2	3							2	1	3	1

S.No	CONTENTS	Contact Hours
	List of Experiments:	
	Any TEN of the following Experiments are to be conducted	
1.	Familiarization with Arduino/Raspberry Pi and perform necessary software	
	installation.	
2.	To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to	
	turn ON LED for 1 sec after every 2 seconds.	
3.	To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi	
	and write a program to turn ON LED when push button is pressed or at sensor	
	detection.	
4.	To interface temperature sensor with Arduino/Raspberry Pi and write a	
	program to print temperature and humidity readings.	
5.	To interface Organic Light Emitting Diode (OLED) with Arduino/Raspberry	
	Pi	

6.	To interface Bluetooth with Arduino/Raspberry Pi and write a program to send	
	sensor data to smartphone using Bluetooth.	
7.	To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn	
	LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.	
8.	Write a program on Arduino/Raspberry Pi to upload and retrieve temperature	
	and humidity data to thingspeak cloud.	
9.	7 Segment Display	
10.	Analog Input & Digital Output	
11.	Night Light Controlled & Monitoring System	
12.	Fire Alarm Using Arduino	
13.	IR Remote Control for Home Appliances	
14.	A Heart Rate Monitoring System	
15.	Alexa based Home Automation System	

IV B.Tech I Semester

COURSE	INDUSTRIAL / RESEARCH	CATEGORY	L-T-P	CREDITS
CODE –	INTERNSHIP 2 MONTHS		0-0-3	3
R2011XXYY	(MANDATORY) AFTER THIRD YEAR	PROJ		
	(TO BE EVALUATED DURING VII			
	SEMESTER)			

Pre-requisite:

Course Outcomes: At the end of the course - student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															
CO6															

(Please fill the above with Levels of Correlation - viz. - L - M - H)

UNIT	CONTENTS	Contact Hours
UNIT - 1		
UNIT - 2		
UNIT - 3		
UNIT - 4		
UNIT - 5		
	Total	

Text books and Reference Books: 1.

IV B.Tech II Semester

COURSE	PROJECT WORK - SEMINAR AND	CATEGORY	L-T-P	CREDITS
R2011XXYY	(6 MONTHS)	PROJ	0-0-0	12
-				

Pre-requisite:

Course Outcomes: At the end of the course - student will be able to

	Knowledge
	Level (K)#
CO1	
CO2	
CO3	
CO4	
CO5	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															
CO6															

S.No	CONTENTS	Contact Hours
	List of Experiments: Any TEN of the following Experiments are to be conducted	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		

II B.Tech II Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	COMMUNICATION SYSTEMS		4-0-0	4
R2011XXYY	(Honors Course)			

Pre-requisite:

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Understand the basics of communication system, analog and digital modulation	
	techniques.	
CO2	Apply the knowledge of digital electronics and understand the error control	
	coding techniques.	
CO3	Adapting various PWM Techniques.	
CO4	Apply the knowledge of digital electronics and understand the error control	
	coding techniques	
CO5	Summarize different types of communication systems and its requirements	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2		1									2		1
CO2	2				2									2	
CO3			2										2		1
CO4	1	2		2										2	
CO5	2		1		2								2		1

(Please fill the above with Levels of Correlation, viz., L-1, M-2, H-3)

		Hours
UNIT	CONTENTS	Contact

Unit – I:

Basic blocks of Communication System. Analog Modulation - Principles of Amplitude Modulation, DSBSC, SSB-SC and VSB-SC, AM transmitters and receivers.

Unit- II:

Angle Modulation - Frequency and Phase Modulation. Transmission Bandwidth of FM signals, Methods of generation and detection, FM Transmitters and Receivers.

Unit–III:

Sampling theorem - Pulse Modulation Techniques - PAM, PWM and PPM concepts - PCM system – Data transmission using analog carriers (BASK, BFSK, BPSK, QPSK).

UNIT -IV:

Error control coding techniques – Linear block codes- Encoder and decoder, Cyclic codes – Encoder, Syndrome Calculator, Convolution codes.

UNIT -V:

Modern	Communication	Systems	_	Microwave	communication	systems	-	Optical
communio	cation system - Sate	llite comm	uni	cation system	- Mobile commun	nication sys	ster	n.
						Tota	1	

Text Books:

- 1. Simon Haykins, 'Communication Systems', John Wiley, 3rd Edition, 1995.
- 2. D.Roddy & J.Coolen, 'Electronic Communications', Prentice Hall of India, 4th Edition, 1999.
- 3. Kennedy G, 'Electronic Communication System', McGraw Hill, 1987.

- 1. Shulin Daniel, 'Error Control Coding', Pearson, 2nd Edition, 2011.
- 2. B.P. Lathi and Zhi Ding, 'Modern Digital and Analog Communication Systems', OUP USA Publications, 4th Edition, 2009.

II B.Tech II Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE – R2011XXYY	SPECIAL ELECTRIC MACHINES		4-0-0	4
	(nonors Course)			

Pre-requisite: Concepts of Electrical Machines

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Learn merits of PMDC motor	
CO2	Choose best control scheme for stepper motor	
CO3	Construct the various converter circuits for Switched Reluctance Motors.	
CO4	Analyse the characteristics of Brushless dc Motor.	
CO5	Understand the operation of Linear Induction Motors.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	0					•									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		1									1	1		
CO2	2	1	2	2									2	2	2
CO3	1	2	2	-							1	1	1	2	2
CO4	1	2		1	2					1			1	1	1
CO5	2		2	1	1	2	1			2	2	2	2	2	3

(Please fill the above with Levels of Correlation, viz., L=1, M=2, H=3)

UNIT	CONTENTS							
		Hours						
UNIT - 1	Permanent Magnet Materials and PMDC motors Introduction - classification of permanent magnet materials used in electrical							
	machines - minor hysteresis loop and recoil line - Stator frames of conventional dc machines - Development of electronically commutated dc motor from conventional dc motor – Permanent magnet materials and characteristics - B-H loop and demagnetization characteristics-high temperature effects-reversible losses - Irreversible losses - Mechanical properties - handling and magnetization - Application of permanent magnets in motors - power density - operating temperature range - severity of operation duty.							

UNIT - 2	Stepper Motors	
	Principle of operation of Stepper Motor - Constructional details -	
	Classification of stepper motors – Different configuration for switching the	
	phase windings - Control circuits for stepper motors – Open loop and closed	
	loop control of two phase hybrid stepping motor.	
UNIT - 3	Switched Reluctance Motors	
	Construction and Principle of operation of Switched Reluctance Motor -	
	Comparison of conventional and switched reluctance motors – Design of stator	
	and rotor pole arcs.	
	Torque producing principle and torque expression – Different converter	
	configurations for SRM – Drive and power circuits for SRM – Position	
	sensing of rotor – Applications of SRM.	
UNIT - 4	Permanent Magnet Brushless DC Motor	
	Principle of operation of BLDC motor - Types of constructions - Surface	
	mounted and interior type permanent magnet DC Motors - Torque and EMF	
	equations for Square wave & Sine wave for PMBLDC Motor - Torque -	
	Speed characteristics of Square wave & Sine wave for PMBLDC Motor -	
	Merits & demerits of Square wave & Sine wave for PMBLDC Motor -	
	Performance and efficiency – Applications.	
UNIT - 5	Linear Induction Motors (LIM)	
	Construction- principle of operation - Double sided LIM from rotating type	
	Induction Motor – Schematic of LIM drive for traction – Development of one	
	sided LIM with back iron - equivalent circuit of LIM.	
	Total	

Text Books:

- 1. Brushless Permanent magnet and reluctance motor drives, Clarenden press, T.J.E. Miller, 1989, Oxford.
- 2. Special electrical Machines, K.Venkata Ratnam, University press, 2009, New Delhi.

II B.Tech II Semester

COURSE CODE - R2011XXYYSIGNALS AND SYSTEMS (Honors Course)O	CATEGORY	L-T-P 4-0-0	CREDITS 4
--	----------	----------------	--------------

Pre-requisite: Basics of Mathematics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Apply the knowledge of various signals and operations.	
CO2	Analyze the spectral characteristics of periodic signals using Fourier Analysis.	
CO3	Classify the systems based on their properties and determine the response of LSI system using convolution.	
CO4	Understand the process of sampling and the effects of under sampling.	
CO5	Apply Laplace and z-transforms to analyze signals and Systems (continuous &	
	discrete).	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1										2	2	2
CO2	1	2	2										2	2	2
CO3	2	2	2	2	1								2	2	2
CO4		2	2	1									2	2	2
CO5	3	3	3										2	2	2

(Please fill the above with Levels of Correlation, viz., L=1, M=2, H=3)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction	
	Definition of Signals and Systems - Classification of Signals - Classification	
	of Systems - Operations on signals: time-shifting - time-scaling - amplitude-	
	shifting - amplitude-scaling. Problems on classification and characteristics of	
	Signals and Systems. Complex exponential and sinusoidal signals - Singularity	
	functions and related functions: impulse function - step function signum	
	function and ramp function. Analogy between vectors and signals - orthogonal	
	signal space - Signal approximation using orthogonal functions - Mean square	
	error - closed or complete set of orthogonal functions - Orthogonally in	
	complex functions. Related Problems.	

UNIT - 2 Fourier Series And Fourier Transform	
Fourier series representation of continuous time periodic signals - properties	
of Fourier series - Dirichlet's conditions - Trigonometric Fourier series and	
Exponential Fourier series - Relation between Trigonometric and	
Exponential Fourier series - Complex Fourier spectrum. Deriving Fourier	
transform from Fourier series - Fourier transform of arbitrary signal -	
Fourier transform of standard signals - Fourier transform of periodic signals	
- properties of Fourier transforms - Fourier transforms involving impulse	
function and Signum function. Introduction to Hilbert Transform. Related	
Problems.	
UNIT - 3 Analysis Of Linear Systems	
Introduction - Linear system - impulse response - Response of a linear	
system - Linear time invariant (LTI) system - Linear time variant (LTV	
system - Concept of convolution in time domain and frequency domain	
Graphical representation of convolution - Transfer function of a LTI system	-
Related problems. Filter characteristics of linear systems. Distortion les	
transmission through a system - Signal bandwidth - system bandwidth - Idea	1
LPF - HPF and BPF characteristics - Causality and Poly-Wiener criterion fo	
physical realization - relationship between bandwidth and rise time.	
UNIT - 4 Correlation	
Auto-correlation and cross-correlation of functions - properties of	
correlation function - Energy density spectrum - Parseval's theorem -	
Power density spectrum - Relation between Convolution and correlation -	
Detection of periodic signals in the presence of noise by correlation -	
Extraction of signal from noise by filtering.	
Sampling Theorem	
Graphical and analytical proof for Band Limited Signals - impulse sampling	
- Natural and Flat top Sampling - Reconstruction of signal from its samples	
- effect of under sampling – Aliasing - Introduction to Band Pass sampling	
- Related problems.	
UNIT - 5 Laplace Transforms	
Introduction - Concept of region of convergence (ROC) for Laplace	
transforms - constraints on ROC for various classes of signals - Properties	
of L.T's - Inverse Laplace transform - Relation between L.T's - and F.T. of	
a signal. Laplace transform of certain signals using waveform synthesis.	
Z–Transforms	
Concept of Z- Transform of a discrete sequence. Region of convergence in	
Z-Transform - constraints on ROC for various classes of signals - Inverse Z-	
transform - properties of Z-transforms. Distinction between Laplace -	
Fourier and Z transforms.	
Tota	i

Text Books:

- 1. Signals Systems & Communications B.P. Lathi BS Publications 2003.
- Signals and Systems A.V. Oppenheim A.S. Willsky and S.H. Nawab PHI 2nd Edn - 1997
- 3. Signals & Systems Simon Haykin and Van Veen Wiley 2nd Edition 2007

- 1. Principles of Linear Systems and Signals BP Lathi Oxford University Press 2015
- 2. Signals and Systems T K Rawat Oxford University press 2011

III B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	HVDC TRANSMISSION		4-0-0	4
R2011XXYY	(Honors Course)			

Pre-requisite: Concepts of Power Systems and Power Electronics.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Learn the basic concepts of HVDC Transmission & their converters	
CO2	Identify the electrical requirements of HVDC lines.	
CO3	Understand the HVDC System Control Strategies with respect to protection.	
CO4	Understand the various sources of reactive power	
CO5	Understand the Multi Terminal HVDC Systems.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

					-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	2	3	-	-	-	-	-	3	2	3	1
CO2	3	2	3	1	2	3	-	-	-	-	-	2	2	3	1
CO3	3	2	3	1	2	3	-	-	-	-	-	2	2	3	1
CO4	3	2	3	1	2	2	-	-	-	-	-	3	2	3	1
CO5	3	2	3	1	2	2	-	-	-	-	-	2	2	3	1

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	DC Power Transmission Technology Introduction - Historical Development - Comparison of AC and DC transmission - types of DC links - Existing HVDC Projects in INDIA. Modern Trends in HVDC Technology. Analysis of HVDC Converters Three Phase 6-Pulse bridge converter - simplified analysis - waveform with and without overlap - Current and voltage relationship - Equivalent circuits of converters.	
	of converters - Analysis of a 12 pulse converters.	
UNIT - 2	HVDC System Control	
	Principles of DC link control - converter control characteristics - constant	

		1
	current and constant extinction angle control - constant ignition angle control	
	- starting and stopping of HVDC link - power control & power reversal in	
	HVDC link.	
UNIT - 3	Converter Faults and Protection	
	Converter faults - over voltages in converter station - Surge arrestors -	
	Protection against over voltages and over currents.	
	Protection against faults in voltage source converter. Smoothing Rector -	
	Transient over voltages for DC line – Protection of DC lines.	
UNIT - 4	Reactive Power Control:	
	Sources of reactive power - Static VAR system - SVC and STATCOM -	
	Reactive power control during transients.	
	Harmonics & Filters:	
	Generation of harmonics – Types and design of various AC filters - DC filters	
	– Active Filters.	
UNIT - 5	Multi Terminal HVDC Systems & DC Circuit Breakers:	
	Types of MTDC systems - Control and Protection of MTDC system – HVDC	
	insulation – DC line insulators – DC breakers – Characteristics and types of	
	DC breakers.	
	Total	

Text Book

- 1. K. R. Padiyar "HVDC Power Transmission Systems Technology and System Interactions" - New Age International (p) Limited - New Delhi - 2003.
- Edward Wilson Kimbark "Direct current Transmission" Wiley Interscience Vol. I -New York - 1971.

- Vijay K. Sood "HVDC and FACTS Controller: Application of Static Converters in power systems" - IEEE Power Electronics and Power Systems series - Kluwer Academic publishers - Boston - First edition January 2004.
- 2. C. Adamson and N.G. Hingorani "High voltage DC power Transmission" Garraway Limited England 1960.
- 3. Mohan Undeland and Robbins "Power Electronics Converters Applications and Design John Wiley & Son Inc. 2003.
- 4. J. Arrialga "HVDC Transmission" Peter Peregrinus Ltd. London 1983.

III B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	POWER QUALITY		4-0-0	4
R2011XXYY	(Honors Course)			

Pre-requisite: Concepts of Power Systems

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Differentiate between different types of power quality problems.	
CO2	Explain the sources of voltage sag - voltage swell - interruptions - transients - long duration over voltages and harmonics in a power system.	
CO3	Explain the principle of voltage regulation and improvement methods.	
CO4	Analyse voltage distortion and current distortion and their indices.	
CO5	Know the concepts of distributed generation technologies and power quality monitoring.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	2	2	1	1	1	1	1	2	2	2	1	1
CO2	1	2	2	1	1	2	1	1	1	1	2	2	2	2	2
CO3	2	2	2	1	1	1	1	1	1	1	1	2	3	2	1
CO4	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2
CO5	2	2	2	1	1	1	1	1	1	1	1	2	2	1	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction - Terms & Definitions Overview of power quality – Concern about the power quality – General classes of power quality and voltage quality problems – Transients – Long–duration voltage variations – Short–duration voltage variations – Voltage unbalance – Waveform distortion – Voltage fluctuation – Power frequency variations – Voltage Sags – Voltage Swell.	
UNIT - 2	Transient Over Voltages	
	Sources of Transient Over voltages - Principles of Over voltage protection-	
	Devices for Over voltage protection - Utility Capacitor Switching Transients -	

	Utility System Lightning Protection – Managing Ferro resonance – Switching	
	Transient Problems with Loads.	
UNIT - 3	Long – Duration Voltage Variations	
	Principles of regulating the voltage – Device for voltage regulation – Utility	
	voltage regulator application - Capacitor for voltage regulation - End-user	
	capacitor application – Regulating utility voltage with distributed resources –	
	Flicker	
UNIT - 4	Harmonic distortion and solutions	
	Voltage distortion vs. Current distortion -Harmonic indices: THD - TDD and	
	True Power Factor- Sources of harmonics - Effect of harmonic distortion -	
	Impact on capacitors - transformers - motors and meters - Concept of Point of	
	common coupling – Passive and active filtering – Numerical problems.	
UNIT - 5	Distributed Generation and Monitoring	
	Resurgence of distributed generation – DG technologies – Interface to the utility	
	system – Power quality issues and operating conflicts – DG on low voltage	
	distribution networks.	
	Monitoring	
	Power quality monitoring and considerations – Historical perspective of PQ	
	measuring instruments - PQ measurement equipment - Assessment of PQ	
	measuring data.	
	Total	

Textbooks:

- Electrical Power Systems Quality Dugan R C McGranaghan M F Santoso S andBeaty H W - Second Edition - McGraw–Hill - 2012 - 3rd edition.
- 2. Electric power quality problems –M.H.J.Bollen IEEE series-Wiley india publications 2011.
- 3. Power Quality Primer Kennedy B W First Edition McGraw-Hill 2000.

- 1. Understanding Power Quality Problems: Voltage Sags and Interruptions Bollen M HJ First Edition IEEE Press; 2000.
- 2. Power System Harmonics Arrillaga J and Watson N R Second Edition John Wiley & Sons 2003.
- 3. Electric Power Quality control Techniques W. E. Kazibwe and M. H. Sendaula Van Nostrad Reinhold New York.
- 4. Power Quality c.shankaran CRC Press 2001
- 5. Harmonics and Power Systems Franciso C.DE LA Rosa–CRC Press (Taylor & Francis)
- 6. Power Quality in Power systems and Electrical Machines–EwaldF.fuchs Mohammad A.S.Masoum–Elsevier.

III B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE – R2011XXYY	ELECTRICAL MACHINE DESIGN (Honors Course)		4-0-0	4

Pre-requisite: Electrical Machines

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Select a proper material for the design of electrical machine.	
CO2	Design the output equations of a dc machine with overall dimensions.	
CO3	Design a overall transformer further requirements.	
CO4	Design of stator core and other characteristics of Induction Motor.	
CO5	Design overall dimensions of Synchronous Machine.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	0				1 0										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	1	1				1	1	3	2	2
CO2	3	2	2	2	1	1					1		3	2	2
CO3	3	2	2	2	2	1					1		3	2	2
CO4	3	2	2	2	2	1					1		3	2	2
CO5	3	2	2	2	2	1					1		3	2	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Fundamental Aspects of Electrical Machine Design	
	Design of machines - design factors - limitation in design - modern trends in	
	electrical machine design - types of magnetic and insulating materials -	
	modes of heat dissipation – cooling of rotating machines – methods of cooling.	
UNIT - 2	Design of DC Machines	
	Construction details – design of different windings – output equation –	
	selection of specific magnetic and electric loadings - separation of D and L -	
	estimation of number of conductors - armature slots and conduct dimensions -	
	choice of number of poles and calculation of length of airgap – design of field	
	systems - interpoles and brushes.	
UNIT - 3	Design of Transformers	

	Transformer windings – output equation – determination of number of turns								
	and length of mean term – design of core - choice of flux density – resistance								
	and leakage reactance – no load current calculation – losses and efficiency –								
	design of efficiency - cooling of transformers- calculation of number of tubes								
UNIT - 4	Design of Induction Motors								
	Comparison between squirrel cage and wound rotors – choice of average flux								
	density and ampere conduction for meter – output equation – design of stator								
	slots and rotor slots – design of no load current – dispersion coefficient and its								
	effects on performance of induction motor.								
UNIT - 5	Design of Synchronous Machines								
	Types of construction – output equation - main dimensions – short circuit								
	ration and its effects on the performance – design of rotor – temperature rise								
	and its effects.								
	Total								

Text Books:

1. "Electrical Machine Design" - A.K.Sawhney - Dhanpath Rai & Co. - 2016

- 1. "Performance and Design of DC Machines" Clayton & Hancock ELBS.
- 2. "Performance and Design of AC Machines" M.G.Say; Pitman ELBS.

III B.Tech II Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	DIGITAL CONTROL SYSTEMS	PCC	4-0-0	4
R2011XXYY	(Honors Course)			

Pre-requisite: Concepts of Advanced Control Systems - basics of Engineering Mathematics.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustarte advantages of digital systems - sampling and data reconstruction.	
CO2	Calculate Z Transform and Inverse Z Transfer function - pulse transfer functions	
	of open and closed loop response.	
CO3	Construct various canonical forms and concepts of controllability and	
	observability.	
CO4	Compute the absolute and relative stability of discrete time systems using Routh	
	Stability criterion - and Root Locus - Design lag and lead compensators to	
	improve system performance using bode diagrams.	
CO5	Design of state feedback controllers and state observers.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2							1	2	2	1	2
CO2	3	2	2	1								2	2	1	1
CO3	2	2	2	2								2	2	2	1
CO4	2	2	1	2								2	2	2	2
CO5	2	2	2	2	1						1	2	2	1	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Introduction And Signal Processing	
	Introduction to analog and digital control systems – Advantages of digital	
	systems - Typical examples - Continuous and Discrete Time Signals -	
	Sample and hold devices - Sampling theorem and data reconstruction -	
	Frequency domain characteristics of zero order hold.	
UNIT - 2	Z–Transformations	
	z–Transforms – Theorems – Finding inverse z–transforms – Formulation of	
	difference equations and solving – Block diagram representation – Pulse	
	transfer functions and finding open loop and closed loop responses.	

UNIT - 3	State Space Analysis And The Concepts of Controllability And	
	Observability	
	State space representation of discrete time systems – Solving Discrete Time	
	state space equations – State transition matrix and its properties –	
	Discretization of continuous time state equations – Concepts of controllability	
	and observability – Tests(without proof).	
UNIT - 4	Stability Analysis	
	Mapping between the s-Plane and the z-Plane – Primary strips and	
	Complementary strips – Stability criterion – Modified Routh's stability	
	criterion and Jury's stability test.	
	Design of Discrete–Time Control Systems By Conventional Methods	
	Transient and steady state specifications – Design using frequency response in	
	the w-plane for lag and lead compensators – Root locus technique in the z-	
	plane.	
UNIT - 5	State Feedback Controllers and State Observers	
	Design of state feedback controller through pole placement – Necessary and	
	sufficient conditions – Ackerman's formula – Design of state observers (Full	
	Order and Reduced Order).	
	Total	

Text Book:

- 1. Discrete-Time Control systems K. Ogata Pearson Education/PHI 2nd Edition.
- 2. Digital Control and State Variable Methods by M.Gopal TMH 4th Edition.

Reference Books:

1. Digital Control Systems - Kuo - Oxford University Press - 2nd Edition - 2003.

III B.Tech II Semester

COURSE	ANALYSIS OF POWER ELECTRONIC	CATEGORY	L-T-P	CREDITS
CODE –	CONVERTERS	PCC	4-0-0	4
R2011XXYY	(Honors Course)			

Pre-requisite: Power Electronics and Electric Drives.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Describe and analyze the characteristics of Switching devices	
CO2	Demonstrate the operation and perform harmonic analysis of AC-DC power converters.	
CO3	Analyze the operation of single-phase and three-phase inverters with PWM control.	
CO4	Illustrate the principles of operation of multilevel inverters	
CO5	PWM Control of CHB and diode clamped multilevel inverters	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	. 0				-	0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	2	-	-	-	-	-	-	2	3	1
CO2	3	3	2	2	3	2	-	-	-	-	-	2	2	3	2
CO3	3	3	2	2	3	3	-	-	-	-	-	3	2	3	2
CO4	3	3	2	2	3	2	-	-	-	-	-	2	2	3	3
CO5	3	3	3	3	3	3	-	-	-	-	-	3	2	3	3

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Overview of Switching Devices	
	Power MOSFET, IGBT, GTO -static and dynamic characteristics, gate drive circuits	
	for switching devices.	
UNIT - 2	AC-DC Converters	
	Single-phase fully-controlled converters with RL load- Evaluation of input power	
	factor and harmonic factor-Continuous and Discontinuous load current, Power factor	
	improvements, Extinction angle control, symmetrical angle control, PWM control.	
	Three-Phase AC-DC Converters, fully-controlled Converters with RL load,	
	Evaluation of input power factor and harmonic factor, Continuous and Discontinuous	
	load current-three-phase dual converters.	
UNIT - 3	PWM Inverters	
	Principle of operation-Voltage control of single-phase inverters - phase displacement	

	Control -Bipolar PWM- Unipolar PWM- staircase PWM. Voltage Control of Three-	
	Phase Inverters- Sinusoidal PWM- Third Harmonic PWM- Space Vector Modulation-	
	Comparison of PWM Techniques- Three phase current source inverters-Variable dc	
	link inverter.	
UNIT - 4	Multilevel Inverters	
	Introduction, Multilevel Concept, Types of Multilevel Inverters- Diode-Clamped	
	Multilevel Inverter, Principle of Operation, Features of Diode-Clamped Inverter-	
	Flying-Capacitors Multilevel Inverter- Principle of Operation, Features of Flying-	
	Capacitors Inverter- Cascaded H-bridge Multilevel Inverter, Principle of Operation,	
	Features of Cascaded H-bridge Inverter- Comparisons of Multilevel inverters.	
UNIT - 5	PWM Multilevel Inverters	
	CHB Multilevel Inverter: SHE PWM- Phase shifted PWM-Level shifted PWM-	
	Diode clamped Multilevel inverter: SHE PWM-Sinusoidal PWM- Space vector	
	PWM-Capacitor voltage balancing.	
	Total	48 Hrs

Text Books

- 1. Power Electronics: Converters, Applications, and Design- Ned Mohan, Tore M. Undeland, William P. Robbins, John Wiley& Sons, 2nd Edition, 2003.
- 2. Power Electronics-Md.H.Rashid –Pearson Education Third Edition- First IndianReprint-2008.
- 3. HIGH-POWER CONVERTERS AND AC DRIVES Bin Wu, Wiley-IEEE Press, 2006.

- 1. Elements of Power Electronics Philip T. Krein, Oxford University press, 2014.
- 2. Power Converter Circuits William Shepherd & Li Zhang-Yes Dee CRC Press, 2004.
- 3. Power Electronics Daniel W. Hart McGraw-Hill,2011.

III B.Tech II Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE – R2011XXVV	VLSI DESIGN		4-0-0	4
	(Honors Course)			

Pre-requisite:

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Understand the insights of the MOS devices and its characteristics.	
CO2	Appreciate the different VLSI process technologies.	
CO3	Design the CMOS combinational logic circuits and its layout.	
CO4	Develop the sequential circuits and clocking schemes.	
CO5	Realize the Design flow of application-specific Integrated circuit.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2			2	2								1		1
CO2														2	
CO3		1	2		1										3
CO4	1												2	1	
CO5			2		2								1		2

UNIT	CONTENTS	Contact					
		Hours					
UNIT – I							
Introduct	ion to MOS Devices						
MOS char action - n Capacitan	racteristics: NMOS characteristics, inverter action – CMOS characteristics, nodels and second order effects of MOS transistors – Current equation – N ces - MOS as Switch, Diode/ resistor – current source and sink – Current mirro	inverter MOSFET or.					
UNIT – I	[:						
MOS Fabrication							
CMOS Fa	brication - n-well, p-well, twin-tub processes - fabrication steps - crystal grow	wth –					

Total

UNIVERSITY COLLEGE OF ENGINEERING KAKINADA (AUTONOMOUS) :: JNTUK,KAKINADA DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Photolithography – oxidation – diffusion – Ion implantation – etching – metallization.

UNIT – III:

CMOS Logic Circuits

CMOS Logic Circuits: Implementation of logic circuits using nMOS and CMOS, Pass transistor and transmission gates – Implementation of combinational circuits – parity generator – magnitude comparator – stick diagram – Design rules and layout design.

UNIT – IV:

Higher order digital Logic Circuits

Memory design – SRAM cell – 6T SRAM – DRAM – 1T, 3T, 4T cells, CMOS Sequential circuits: Static and Dynamic circuits – True Single-phase clocked registers – Clocking schemes.

UNIT - V:

Application Specific Integrated Circuits

ASIC - Types of ASICs - Design flow – Design Entry – Simulation – Synthesis – Floor planning – Placement – Routing - Circuit extraction – Programmable ASICs.

Text Books:

- 1. Neil Weste, David Harris, 'CMOS VLSI Design: A Circuits and Systems Perspective', Addison Wesley, 4th Edition, 2020.
- 2. Debaprasad Das, 'VLSI Design', Oxford University Press, 2010.
- 3. Ken Martin, 'Digital Integrated Circuits', Oxford University Press, 1999.
- 4. Peter Van, 'Microchip Fabrication', Mc-Graw Hill Professional, 6th Edition, 2014.

- 1. M. J. S. Smith, 'Application Specific Integrated Circuits', Addison Wesley, 1997.
- 2. Uyemura, 'Introduction to VLSI Circuits and Systems', Wiley, 1st Edition, 2012.

IV B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	HYBRID ELECTRICAL VEHICLES		4-0-0	4
K2011AAYY	(Honors Course)			

Pre-requisite: Concepts of Electrical Machines - Power Electronics.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know the concept of electric vehicles and hybrid electric vehicles.	
CO2	Familiar with different configuration of hybrid electric vehicles.	
CO3	Choose an effective motor for EV and HEV application	
CO4	Design the power converters used in hybrid electric vehicles	
CO5	Choose different batteries and other energy storage systems.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

11	0				1 0										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				2	3	1	1				3	1	1	
CO2	2	1	1		2	1	1					2	1	2	2
CO3	3	2	2	2	1		1				1	1	3	2	2
CO4	3	3	3	2	2		1						3	3	2
CO5	2	1	1				2				2	3	1	1	2

UNIT	CONTENTS	Contact Hours
UNIT - 1	Introduction	
	Fundamentals of vehicle - components of conventional vehicle and propulsion	
	load; Drive cycles and drive terrain; Concept of electric vehicle and hybrid	
	electric vehicle; History of hybrid vehicles - advantages and applications of	
	Electric and Hybrid Electric Vehicles.	
UNIT - 2	Hybridization of Automobile	
	Architectures of HEVs - series and parallel HEVs - complex HEVs. Plug-in	
	hybrid vehicle(PHEV) - constituents of PHEV - comparison of HEV and	
	PHEV; Extended range hybrid electric vehicles(EREVs) - blended PHEVs -	
	Fuel Cell vehicles and its constituents.	
UNIT - 3	Special Machines for EV and HEVs	
	Characteristics of traction drive - requirement of electric motors for EV/HEVs.	

	Induction Motor drives - their control and applications in EV/HEVs. Permanent magnet Synchronous motor: configuration - control and applications in EV/HEVs. Brushless DC Motors: Advantages - control of application in EV/HEVs. Switch reluctance motors: Merits limitations - converter configuration - control of SPM for EV/HEVs	
UNIT - 4	Power Electronics in HEVs	
	Boost and Buck-Boost converters - Multi Quadrant DC-DC converters - DC- AC Inverter for EV and HEV applications - Three Phase DC-AC inverters - Voltage control of DC-AC inverters using PWM - EV and PHEV battery chargers.	
UNIT - 5	Energy Sources for HEVs Energy Storage - Battery based energy storage and simplified models of battery - fuel cells - their characteristics and simplified models - super capacitor based energy storage - its analysis and simplified models - flywheels and their modeling for energy storage in EV/HEV - Hybridization of various energy storage devices.	
	Total	

Text Books

- 1. Ali Emadi Advanced Electric Drive Vehicles CRC Press 2014.
- 2. Iqbal Hussein Electric and Hybrid Vehicles: Design Fundamentals CRC Press 2003.

Reference Books:

- 1. MehrdadEhsani YimiGao Sebastian E. Gay Ali Emadi Modern Electric Hybrid Electric and Fuel Cell Vehicles: Fundamentals Theory and Design CRC Press 2004.
- 2. James Larminie John Lowry Electric Vehicle Technology Explained Wiley 2003.
- 3. H. Partab: Modern Electric Traction DhanpatRai& Co 2007.

ResearchBooks:

- 1. Pistooa G. "Power Sources Models Sustanability Infrstructure and the market" Elsevier 2008
- 2. Mi Chris Masrur A. and Gao D.W. "Hybrid Electric Vehicle: Principles and Applications with Practical Perspectives" 1995.

IV B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE – R2011XXYY	SMART GRID TECHNOLOGIES (Honors Course)		4-0-0	4

Pre-requisite: Concepts of Electric Grid - Renewable Energy Sources

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know the concept of smart grid and analyse the smart grid policies and	
	developments in smart grids.	
CO2	Develop concepts of smart grid technologies in hybrid electrical vehicles etc.	
CO3	Adapt the concepts of smart substations - feeder automation - Battery Energy storage systems etc.	
CO4	Analyse micro grids and distributed generation systems.	
CO5	Analyse the effect of power quality in smart grid and to understand latest developments in ICT for smart grid.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2										1	1	2
CO2	1	2	2										1	1	3
CO3	2	2		2	1								1	2	2
CO4	2	2		2									1	1	3
CO5	2	2		2	1								1	2	2

UNIT	CONTENTS	Contact Hours						
UNIT - 1	Introduction to Smart Grid							
	Evolution of Electric Grid - Concept of Smart Grid - Definitions - Need of							
	Smart Grid - Functions of Smart Grid - Opportunities & Barriers of Smart							
	Grid - Difference between conventional & smart grid - Concept of Resilient							
	& Self-Healing Grid - Present development & International policies on Smart							
	Grid. Case study of Smart Grid.							
UNIT - 2	Smart Grid Technologies: Part 1							
	Introduction to Smart Meters - Real Time Pricing - Smart Appliances -							
	Automatic Meter Reading(AMR) - Outage Management System(OMS) -							

	Plug in Hybrid Electric Vehicles(PHEV) - Vehicle to Grid - Smart Sensors -	
	Home & Building Automation - Phase Shifting Transformers - Net Metering.	
UNIT - 3	Smart Grid Technologies: Part 2	
	Smart Substations - Substation Automation - Feeder Automation. Geographic	
	Information System (GIS) - Intelligent Electronic Devices (IED) & their	
	application for monitoring & protection.	
	Smart storage like Battery Energy Storage Systems (BESS) - Super	
	Conducting Magnetic Energy Storage Systems (SMES) - Pumped Hydro -	
	Compressed Air Energy Storage (CAES) - Wide Area Measurement System	
	(WAMS) - Phase Measurement Unit (PMU).	
UNIT - 4	Micro grids and Distributed Energy Resources	
	Concept of micro grid - need & applications of microgrid - formation of	
	microgrid - Issues of interconnection - protection & control of microgrid -	
	Integration of renewable energy sources - Demand Response.	
UNIT - 5	Power Quality Management in Smart Grid	
	Power Quality & EMC in Smart Grid - Power Quality issues of Grid	
	connected Renewable Energy Sources - Power Quality Conditioners for Smart	
	Grid - Web based Power Quality monitoring - Introduction to Power Quality	
	Audit.	
	Information and Communication Technology for Smart Grid	
	Advanced Metering Infrastructure (AMI) - Home Area Network (HAN) -	
	Neighborhood Area Network (NAN) - Wide Area Network (WAN).	
	Total	

Text Books:

- 1. Integration of Green and Renewable Energy in Electric Power Systems by Ali Keyhani Mohammad N. Marwali Min Dai Wiley 2009.
- 2. The Smart Grid: Enabling Energy Efficiency and Demand Response by Clark W. Gellings Fairmont Press 2009.
- 3. Smart Grid: Technology and Applications by Janaka B. Ekanayake Nick Jenkins Kithsiri Liyanage Jianzhong Wu Akihiko Yokoyama Wiley publishers 2012.
- 4. Smart Grids by Jean-Claude Sabonnadière NouredineHadjsaïd Wiley publishers 2013.
- 5. Smart Power: Climate Changes the Smart Grid and the Future of Electric Utilities - by Peter S. Fox Penner - Island Press; 1st edition - 8 Jun 2010
- 6. Microgrids and Active Distribution Networks by S. Chowdhury S. P. Chowdhury P. Crossley Institution of Engineering and Technology 30 Jun 2009
- 7. Smart Grids (Power Engineering)by Stuart Borlase CRC Press.

Reference Books:

1. The Advanced Smart Grid: Edge Power Driving Sustainability:1 by Andres Carvallo - John Cooper - Artech House Publishers July 2011

- 2. Control and Automation of Electric Power Distribution Systems (Power Engineering) by James Northcote Green Robert G. Wilson CRC Press 2017.
- Substation Automation (Power Electronics and Power Systems) by MladenKezunovic -Mark G. Adamiak - Alexander P. Apostolov - Jeffrey George Gilbert - Springer - 2010.
- 4. Electrical Power System Quality by R. C. Dugan Mark F. McGranghan Surya Santoso H. Wayne Beaty McGraw Hill Publication 2nd Edition.
- 5. Communication and Networking in Smart Grids by Yang Xiao CRC Press 2012.

IV B.Tech I Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	POWER SYSTEM DEREGULATION		4-0-0	4
R2011XXYY	(Honors Course)			

Pre-requisite: Concepts of Power System Operation and Control

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know the essential and operation of deregulated electricity market systems	
CO2	Learn about the different structure model.	
CO3	Analyze various types of electricity market operational and control issues using new	
	mathematical models.	
CO4	Analyse LMP's wheeling transactions and congestion management.	
CO5	Analyze impact of ancillary services	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	1	1	1	1	1	1	1	2	2	1	1	1
CO2	1	2	1	1	1	1	1	1	1	1	2	2	1	2	1
CO3	1	2	1	1	1	2	1	1	1	1	2	2	1	1	1
CO4	1	2	2	1	1	2	1	1	1	1	2	2	2	2	2
CO5	2	2	1	1	2	1	1	1	1	1	2	2	2	2	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Need and conditions for deregulation. Introduction of Market structure -	
	Market Architecture - Spot market - forward markets and settlements. Review	
	of Concepts marginal cost of generation - least-cost operation - incremental	
	cost of generation. Power System Operation - Power Exchange.	
UNIT - 2	Electricity sector structures and Ownership /management - the forms of	
	Ownership and management. Different structure model like Monopoly model -	
	Purchasing agency model - wholesale competition model - Retail competition	
	model - Definition of Available Transfer Capability (ATC) - computation of	
	ATC.	

UNIT - 3	Framework and methods for the analysis of Bilateral and pool markets - LMP based markets. Auction models and price formation - price based unit commitment - country practices.	
UNIT - 4	Transmission network and market power. Power wheeling transactions and marginal costing - transmission costing. Congestion management methods-market splitting - counter-trading; Effect of congestion on LMPs- country practices.	
UNIT - 5	Ancillary Services and System Security in Deregulation. Classifications and definitions - AS management in various markets- country practices. Technical - economic - & regulatory issues involved in the deregulation of the power industry.	
	Total	

Text Books:

- 1. Power System Economics: Designing markets for electricity Steven Stoft wiley publishers 2002.
- 2. Operation of restructured power systems K. Bhattacharya M.H.J. Bollen and J.E. Daalder Springer 2012.

- 1. Power generation operation and control -J. Wood and B. F. Wollenberg Wiley 1998.
- 2. Market operations in electric power systems M. Shahidehpour H. Yaminand Z. Li Wiley -2003.
- 3. Fundamentals of power system economics S. Kirschen and G. Strbac Wiley 2nd edition 2018.
- 4. Optimization principles: Practical Applications to the Operation and Markets of the Electric Power Industry N. S. Rau IEEE Press series on Power Engineering.
- 5. "Competition and Choice in Electricity" by Sally Hunt and Graham Shuttleworth Wiley publishers 1997.

II B.Tech II Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	BASICS OF CONTROL SYSTEMS		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Concepts of Mathematics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Derive the transfer function of physical systems and determination of overall	3
	transfer function using block diagram algebra and signal flow graphs.	
CO2	Evaluate the time response of first and specifications of second order systems and	3
	determine error constants	
CO3	Analyze absolute and relative stability of LTI systems using Routh's stability	4
	criterion and root locus method.	
CO4	Analyze the stability of LTI systems using frequency response methods.	4
CO5	Apply state space analysis concepts to represent physical systems as state models,	3
	derive transfer function and determine the response. Understand the concepts of	
	controllability and observability	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	-	-	-	-	-	-	1	2	2	2	2
CO2	2	2	2	2	-	-	-	-	-	-	1	2	2	2	2
CO3	3	3	2	2	-	-	-	-	-	-	1	3	3	2	2
CO4	3	3	3	3	-	-	-	-	-	-	1	3	3	3	2
CO5	2	2	2	2	-	-	-	-	-	-	1	3	2	2	2

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Mathematical Modeling of Control Systems	
	Classification of control systems - open loop and closed loop control systems	
	and their differences - transfer function of linear system - differential	
	equations of electrical networks - translational and rotational mechanical	
	systems - transfer function of DC servo motor – AC servo motor – block	
	diagram algebra – representation by signal flow graph – reduction using	
	Mason's gain formula - Feedback characteristics.	
UNIT - 2	Time Response Analysis	

	Standard test signals - time response of first and second order systems - time	
	domain specifications - steady state errors and error constants - P - PI - PID	
	Controllers.	
UNIT - 3	Stability and Root Locus Technique	
	The concept of stability – Routh-Hurwitz –limitations of Routh-Hurwitz	
	criterion -	
	Root locus concept – construction of root loci (simple problems).	
UNIT - 4	Frequency Response Analysis	
	Introduction to frequency domain specifications – Polar Plot - Bode diagrams	
	- transfer function from the Bode diagram - phase margin and gain margin -	
	stability analysis from Bode plots.	
UNIT - 5	State Space Analysis of LTI Systems	
	Concepts of state - state variables and state model - state space	
	representation of transfer function - diagonalization - solving the time	
	invariant state equations - State Transition Matrix and it's properties -	
	concepts of controllability and observability.	
	Total	

Text Books:

- 1. Modern Control Engineering by Kotsuhiko Ogata Prentice Hall of India.
- 2. Automatic control systems by Benjamin C.Kuo Prentice Hall of India 2nd Edition.

- Control Systems principles and design by M.Gopal Tata Mc Graw Hill education Pvt Ltd. 4th Edition.
- 2. Control Systems by Manik Dhanesh N Cengage publications.
- 3. Control Systems Engineering by I.J.Nagarath and M.Gopal Newage International Publications 5th Edition.
- 4. Control Systems Engineering by S.Palani Tata Mc Graw Hill Publications.

II B.Tech II Semester

COURSE	BASICS OF ELECTRICAL	CATEGORY	L-T-P	CREDITS
CODE –	MEASUREMENTS		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basic concepts of Electrical Engineering

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Choose right type of instrument for measurement of ac and dc voltage and	
	current.	
CO2	Analyse the operation of wattmeter and energy meter.	
CO3	Differentiate the operation of AC and DC bridges.	
CO4	Describe the operation various Transducers.	
CO5	Know the importance of Digital Meters and their working principles.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3										1	2	
CO2	1	2	3										1	2	
CO3	1	2	3										1	2	
CO4	1	2	3		1								1	2	
CO5	1	2	3		1								1	2	

UNIT	CONTENTS	Contact Hours
UNIT - 1	UNIT_I.	Hours
	Analog Ammeter and Voltmeters	
	Classification – deflecting - control and damping torques – Construction of	
	PMMC - Moving Iron and Electrodynamo instruments - Torque equation -	
	Errors and Compensation – Numerical Problems.	
UNIT - 2	Analog Wattmeters and Energy Meters	
	Electrodynamometer type wattmeter (LPF and UPF) - Induction Type	
	Energy meters-Construction and working - Errors and Compensation-	
	Numerical Problems.	
UNIT - 3	Measurements of Electrical parameters	

	DC Bridges: Measurement of Resistance - Kelvin's double bridge -									
	Wheatstone bridge – Numerical Problems.									
	AC Bridges: Measurement of inductance and quality factor - Maxwell's									
	bridge - measurement of capacitance - Schering Bridge- Numerical									
	Problems.									
UNIT - 4	Transducers									
	Classification - Resistive (Strain Gauge) - Inductive (LVDT) and Capacitive									
	(Piezo electric) Transducer – Numerical Problems.									
UNIT - 5	Digital Meters									
	Successive approximation Digital Voltmeter — Digital frequency meter -									
	Digital multimeter - Digital Energy Meter.									
	Total									

Text Books:

- 1. Electrical & Electronic Measurement & Instruments by A.K.Sawhney Dhanpat Rai & Co.Publications 19th revised edition 2011.
- 2. Electronic Instrumentation by H.S.Kalsi THM.

- Electrical Measurements and measuring Instruments by E.W. Golding and F.C.Widdis -5th Edition - Wheeler Publishing.
- 3. Modern Electronic Instrumentation and Measurement Techniques by A.D. Helfrick and W.D. Cooper PHI 5th Edition 2002.
- 4. Electrical and Electronic Measurements and instrumentation by R.K.Rajput S.Chand 3rd edition.

II B.Tech II Semester

COURSE		CATEGORY	L-T-P	CREDITS
CODE –	RENEWABLE ENERGY SOURCES		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basic concepts on different sources of Energy.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Analyze solar radiation data - extra-terrestrial radiation - radiation on earth's	
	surface and solar Energy Storage.	
CO2	Illustrate the components of wind energy systems.	
CO3	Illustrate the working of biomass - digesters and Geothermal plants.	
CO4	Demonstrate the principle of Energy production from OTEC - Tidal and Waves.	
CO5	Evaluate the concept and working of Fuel cells & MHD power generation.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1		1						1	1	1
CO2	2	2	3	2	1								1	1	1
CO3	2	2	3	2	1								1	1	1
CO4	1	2	2										1	1	1
CO5	1	2	2										1	1	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Solar Energy	
	Introduction - Renewable Sources - prospects - Solar radiation at the Earth	
	Surface - Equivalent circuit of a PV - I-V & P-V Characteristics of a PV-	
	Solar Energy Collectors-Flat plate Collectors - concentrating collectors - Solar	
	Energy storage systems - Solar Pond - Applications - Solar water heating -	
	Solar Green house.	
UNIT - 2	Wind Energy	
	Introduction - basic Principles of Wind Energy Conversion - the nature of	
	Wind - the power in the wind - Wind Energy Conversion - Site selection	
	considerations - basic components of a WECS (Wind Energy Conversion	
	Systems) - Classification of WEC Systems - Applications.	

UNIT - 3	Biomass and Geothermal Energy							
	Biomass: Introduction - Biomass conversion technologies - Photosynthesis -							
	factors affecting Bio digestion - classification of biogas plants - Types of							
	biogas plants - selection of site for a biogas plant							
	Geothermal Energy: Introduction - Geothermal Sources - Applications -							
	operational and Environmental problems.							
UNIT - 4	Energy From oceans - Waves & Tides:							
	Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) -							
	methods - prospects of OTEC in India.							
	Waves: Introduction - Energy and Power from the waves - Wave Energy							
	conversion devices -							
	Tides: Basic principle of Tide Energy - Components of Tidal Energy -							
UNIT - 5	Chemical Energy Sources:							
	Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell							
	- types of Fuel Cells - Applications.							
	Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage							
	and Applications							
	Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation							
	- Types.							
	Total							

Text Books:

- 1. G.D.Rai Non-Conventional Energy Sources khanna Publications 2011.
- 2. John Twidell & Tony Weir Renewable Energy Sources Taylor & francis 2013.

- S.P.Sukhatme & J.K.Nayak Solar Energy-Principles of Thermal Collection and Storage - TMH - 2011.
- John Andrews & Nick Jelly Energy Science- principles technologies and Impacts -Oxford - 2nd edition - 2013.
- 3. Shoba Nath Singh Non- Conventional Energy Resources Pearson Publications 2015.

III B.Tech I Semester

COURSE	BASICS OF MICROPROCESSORS AND	CATEGORY	L-T-P	CREDITS
CODE –	MICROCONTROLLERS		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basics of Processors

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know the concepts of the Microprocessor capability in general and explore the	
	evaluation of microprocessors.	
CO2	Analyse the instruction sets - addressing modes - minimum and maximum modes	
	operations of 8086 Microprocessors	
CO3	Analyse the Microcontroller and interfacing capability	
CO4	Describe the architecture and interfacing of 8051 controller	
CO5	Know the concepts of PIC micro controller and its programming.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

		1			`		1	1					1		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1								1	3	2	1
CO2	3	1	2	1								1	3	3	2
CO3	3	2	3	2	1							1	3	3	2
CO4	3	2	2	2	1							1	3	3	2
CO5	3	1	2	2	3							1	3	3	2

UNIT	CONTENTS	Contact Hours
UNIT - 1	Introduction to Microprocessor Architecture	
	Introduction and evolution of Microprocessors – Architecture of 8086 –	
	Memory Organization of 8086 – Register Organization of 8086– Introduction	
	to 80286 - 80386 - 80486 and Pentium (brief description about architectural	
	advancements only).	
UNIT - 2	Minimum and Maximum Mode Operations	
	Instruction sets of 8086 - Addressing modes - Assembler directives - General	
	bus operation of 8086 – Minimum and Maximum mode operations of 8086 –	
	8086 Control signal interfacing – Read and write cycle timing diagrams.	
UNIT - 3	Microprocessors I/O interfacing	
	8255 PPI- Architecture of 8255-Modes of operation - Interfacing I/O devices	

	to 8086 using 8255 – Interfacing A to D converters – Interfacing D to A	
	converters – Stepper motor interfacing– Static memory interfacing with 8086.	
UNIT - 4	8051 Microcontroller	
	Overview of 8051 Microcontroller - Architecture - Memory Organization -	
	Register set.	
UNIT - 5	8051 Interfacing and Applications	
	Instruction set – I/O ports and Interrupts – Timers and Counters – Serial	
	Communication – Interfacing of peripherals – Applications of microcontrollers.	
	Total	

Text Books:

- 1. Ray and Burchandi "Advanced Microprocessors and Interfacing" Tata McGraw–Hill 3rd edition 2006.
- 2. Kenneth J Ayala "The 8051 Microcontroller Architecture Programming and Applications" Thomson Publishers 2nd Edition.
- PIC Microcontroller and Embedded Systems using Assembly and C for PIC 18 -Muhammad Ali Mazidi - RolindD.Mckinay - Danny causey -Pearson Publisher 21st Impression.

- 1. Microprocessors and Interfacing Douglas V Hall Mc-Graw Hill 2nd Edition.
- 2. R.S. Kaler "A Text book of Microprocessors and Micro Controllers" I.K. International Publishing House Pvt. Ltd.
- 3. Ajay V. Deshmukh "Microcontrollers Theory and Applications" Tata McGraw–Hill Companies –2005.
- 4. Ajit Pal "Microcontrollers Principles and Applications" PHI Learning Pvt Ltd 2011.

III B.Tech I Semester

COURSE	CONCEPTS OF POWER SYSTEM	CATEGORY	L-T-P	CREDITS
CODE –	ENGINEERING		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basics of Power Systems

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know the concepts of power generation by various types of power plants.	2
CO2	Learn about transmission line concepts and distribution systems schemes.	2
CO3	Learn about protection equipments and grounding methods of power system.	2
CO4	Know the economic aspects of electrical energy and their importance.	2
CO5	Know the importance of power factor improvement and voltage control in power	3
	systems.	
// D		

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	1						2		2	3	1
CO2	3	2	2	1	2						1		2	3	1
CO3	3	2	2	1	1						2		2	3	1
CO4	3	2	2	1	2						2		2	3	2
CO5	3	2	2	2	2						2		2	3	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Power Generation Concepts & Types	
	Generation and sources of Energy – working principle and Schematic diagram	
	approach of Thermal Power Plant – Hydro Power Plant - Nuclear Power Plant	
	– Gas Power Plants – Comparison between Power Plants.	
UNIT - 2	Transmission and Distribution Concepts	
	Types of Conductors Materials - Constants of Transmission Line -	
	Classification of Overhead Transmission Lines - Performance of Short	
	Transmission Lines – Simple Problems.	
	Basic concept of Sub Station – Distribution Systems – Connection Schemes of	
	Distribution Systems – Structure of Cables – Differences between Overhead &	

	Underground systems.	
UNIT - 3	Protection and Grounding	
	List of Faults – Basic concepts of fuse – Circuit Breakers – Relays – SF ₆	
	Circuit Breakers – Vacuum Circuit Breakers – Operation of Lightning Arrester	
	- Grounding and its advantages - Methods of Neutral Grounding: Resistance -	
	Reactance and Resonant Grounding – Numerical Problems.	
UNIT - 4	Economic Aspects	
	Definitions of Load - Load & Load Duration Curves - Load Factor - Demand	
	Factor – Utilization Factor - Loss Factor – Types of Tariff - Cost of Electrical	
	Energy – Expression for Cost of Electrical Energy – Numerical Problems	
UNIT - 5	Power Factor Improvement and Voltage Control	
	Power Factor - Effects and Causes of low Power Factor- Shunt & Series	
	Capacitor Compensation - Numerical Problems - Need of Voltage Control -	
	Types of Voltage regulating Devices.	
	Total	

Text Books:

1. Principles of Power System by V.K.Mehata - Rohit Mehata - S.Chand Publishers.

Reference Books:

1. Electrical Power Systems by C.L.Wadwa - New Age International Publishers.

III B.Tech I Semester

COURSE	ELECTRICAL ESTIMATION AND	CATEGORY	L-T-P	CREDITS
CODE –	COSTING		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basics of Power Systems

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge Level (K)#
CO1	Demonstrate the various electrical apparatus and their interconnections.	
CO2	Examine various components of electrical installations.	
CO3	Estimate the cost for installation of wiring for different types of building and small industries.	
CO4	Illustrate the components of electrical substations.	
CO5	Design suitable control circuit for starting of three phase induction motor and synchronous motor.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	0				- C	•									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2		1						1	2	2	1	2
CO2			2		2						1	2	2	1	1
CO3	2	2	1								2	1	2	2	2
CO4	3	1	1	2							1	2	2	1	1
CO5	2	2	2	2							1	2	2	1	2

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Electrical Symbols and Simple Electrical Circuits Identification of electrical symbols - Electrical Diagrams - Methods of representation of wiring diagrams - introduction to simple light and fan circuits - system of connection of appliances and accessories	
	encards system of connection of apprances and accessories.	
UNIT - 2	Design Considerations of Electrical Installations	
	Electric supply system - Three-phase four wire distribution system -	
	protection of electric installation against overload - short circuit and earth	
	fault - earthing - neutral and earth wire - types of loads - systems of wiring	

	- permissible of voltage drops and sizes of wires - estimating and costing of									
	electrical installations.									
UNIT - 3	Electrical Installation for Different Types of Buildings and Small									
	Industries									
	Electrical installations for electrical buildings - estimating and costing of									
	material - simple examples on electrical installation for residential buildings -									
	electrical installations for commercial buildings - electrical installation for									
	small industries-case study.									
UNIT - 4	Substations									
	Introduction - types of substations - outdoor substations-pole mounted type -									
	indoor substations-floor mounted type - simple examples on quantity									
	estimation-case study.									
UNIT - 5	Motor control circuits									
	Introduction to AC motors - starting of three phase squirrel cage induction									
	motors - starting of wound rotor motors - starting of synchronous motors -									
	contractor control circuit components - basic control circuits - motor									
	protection									
	Total									

Text Books:

1. Electrical Design and Estimation Costing - <u>K. B. Raina</u> and S.K.Bhattacharya – New Age International Publishers - 2007.

- 1. Electrical wiring estimating and costing S.L.Uppal and G.C.Garg Khannapublishers 6th edition 1987.
- 2. A course in electrical installation estimating and costing J.B.Gupta –Kataria SK & Sons 2013.

III B.Tech II Semester

COURSE	ENERGY AUDITING - CONSERVATION	CATEGORY	L-T-P	CREDITS
CODE –	AND MANAGEMENT		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basics of Electrical Engineering-Motor - Illumination concepts.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Understand the principles of energy audit along with various Energy related terminologies.	
CO2	Asses the role of Energy Manager and Energy Management program.	
CO3	Design a energy efficient motors and good lighting system.	
CO4	Analyse the methods to improve the power factor and identify the energy	
	instruments for various real time applications.	
CO5	Evaluate the computational techniques with regard to economic aspects.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1										2	2	1
CO2	2		2										2	2	1
CO3	2		2										2	2	1
CO4	2	1	2										2	2	1
CO5	2	2	2										2	2	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Basic Principles of Energy Audit	
	Energy audit- definitions - concept - types of audit - energy index - cost	
	index - pie charts - Sankey diagrams and load profiles - Energy conservation schemes- Energy audit of industries- energy saving potential - energy audit of process industry - thermal power station - building energy audit - Conservation of Energy Building Codes (ECBC-2017) -	
UNIT - 2	Energy Management	
	Principles of energy management - organizing energy management program	
	- initiating - planning - controlling - promoting - monitoring - reporting.	
	Energy manager - qualities and functions - language - Questionnaire -	

	check list for top management.	
UNIT - 3	Energy Efficient Motors and Lighting	
	Energy efficient motors - factors affecting efficiency - loss distribution -	
	constructional details - characteristics - variable speed - RMS - voltage	
	variation-voltage unbalance-over motoring-motor energy audit. lighting	
	system design and practice - lighting control - lighting energy audit.	
UNIT - 4	Power Factor Improvement And Energy Instruments	
	Power factor - methods of improvement - location of capacitors - Power	
	factor with non-linear loads - effect of harmonics on p.f - p.f motor	
	controllers - Energy Instruments- watt meter - data loggers - thermocouples	
	- pyrometers - lux meters - tongue testers.	
UNIT - 5	Economic Aspects And Their Computation	
	Economics Analysis depreciation Methods - time value of money - rate of	
	return - present worth method - replacement analysis - lifecycle costing	
	analysis - Energy efficient motors. Calculation of simple payback method -	
	net present value method- Power factor correction - lighting - Applications	
	of life cycle costing analysis - return on investment.	
	Total	

Text Books:

- 1. Energy management by W.R.Murphy&G.Mckay Butter worth Heinemann publications 1982.
- 2. Energy management hand book by W.CTurner John wiley and sons 1982.

- Energy efficient electric motors by John.C.Andreas Marcel Dekker Inc Ltd-2nd edition -1995
- Energy management by Paul o' Callaghan Mc-graw Hill Book company-1st edition -1998
- 3. Energy management and good lighting practice : fuel efficiency- booklet12-EEO

III B.Tech II Semester

COURSE	FUNDAMENTALS OF UTILIZATION OF	CATEGORY	L-T-P	CREDITS
CODE –	ELECTRICAL ENERGY		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basics of Electrical Engineering

Course Outcomes: After the completion of the course the student should be able to understand:

		Knowledge Level (K)#
CO1	Know the concepts of illumination and various illumination methods.	
CO2	Know about the resistance - induction and dielectric heating.	
CO3	Learn about the resistance and arc welding and welding equipment	
CO4	Know about the mechanisms - equipment and technology used in the electric traction.	
CO5	Differentiate the importance of various energy storage systems	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		1								1	3	3	1
CO2	3	3		1								1	3	3	1
CO3	3	3		1								1	3	3	1
CO4	3	3		2								1	3	3	1
CO5	3	3		1			1					1	3	3	1

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Illumination Fundamentals	
	Introduction - terms used in illumination-Laws of illumination-Lux meter-	
	Sources of light.	
	Various Illumination Methods	
	Tungsten filament lamps and fluorescent lamps - Comparison -Basic	
	principles of light control – Types and design of lighting and flood lighting–	
	LED lighting - Energy conservation.	
UNIT - 2	Electric Heating	
	Advantages and methods of electric heating-Resistance heating induction	
	heating and dielectric heating.	
UNIT - 3	Electric Welding	

	Electric welding-Resistance and arc welding-Electric welding equipment-	
	Comparison between AC and DC Welding	
UNIT - 4	Electric Traction	
	System of electric traction and track electrification- Review of existing	
	electric traction systems in India- Special features of traction motor-	
	Mechanics of train movement-Speed-time curves for different services -	
	Trapezoidal and quadrilateral speed time curves. Calculations of tractive	
	effort- power -Specific energy consumption for given run-Effect of varying	
	acceleration and braking retardation-Adhesive weight and braking retardation	
	adhesive weight and coefficient of adhesion.	
UNIT - 5	Introduction to Energy Storage Systems	
	Need for energy storage - Types of energy storage-Thermal - electrical -	
	magnetic and chemical storage systems - Comparison of energy storage	
	technologies-Applications.	
	Total	

Text Books:

- Electrical Power Systems (Generation Transmission Distribution Protecection and Utilization of Electrical Energy) – Dr. S.L.Uppal and Prof. Sunil S.Rao – Khanna Publisher - 15th edition - 1987.
- 2. Electric Power Distribution A. S. Pabla McGrawHill 5th edition 2004.

Reference Books:

1. Generation Distribution and Utilization of Electrical Energy – C.L.Wadhwa- New Age International Publishers- revised 3rd edition.

III B.Tech II Semester

COURSE CODE – R2011XXYY	FUNDAMANTALS OF POWER ELECTRONICS (Minor Course)	CATEGORY	L-T-P 4-0-0	CREDITS 4
-------------------------------	--	----------	----------------	--------------

Pre-requisite: Electrical Circuits - Power Systems-I - Basic concepts of

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate the static and dynamic characteristics SCR - Power MOSFET and Power	
	IGBT.	
CO2	Analyse the operation of phase controlled rectifiers.	
CO3	Analyse the operation of Three-phase full-wave converters - AC Voltage	
	Controllers and Cyclo-converters.	
CO4	Examine the operation and design of different types of DC-DC converters.	
CO5	Analyse the operation of PWM inverters for voltage control and harmonic	
	mitigation.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	-	-	-	-	-	-	-	1	2	2
CO2	3	2	2	2	1	2	-	-	-	-	-	-	1	3	1
CO3	3	2	2	1	1	2	-	-	-	-	-	-	1	3	1
CO4	3	2	2	2	1	2	-	-	-	-	-	-	1	3	1
CO5	3	2	2	2	1	2	-	-	-	-	-	-	1	3	1

(Please fill the above with Levels of Correlation, viz., 3: Strong, 2: Moderate, 1: Weak)

UNIT	CONTENTS	Contact
		Hours
UNIT - 1	Power Semi-Conductor Devices	
	Silicon controlled rectifier (SCR) – Two transistor analogy - Static and Dynamic	
	characteristics	
	Static and Dynamic Characteristics of Power MOSFET and Power IGBT- Gate	
	Driver Circuits for Power MOSFET and IGBT - Numerical problems.	
UNIT - 2	Single-phase AC-DC Converters	
	Single-phase half wave controlled rectifiers - R load and RL load with and	
	without freewheeling diode - Single-phase fully controlled bridge converter with	
	R load - RL load and RLE load - Continuous and Discontinuous conduction -	
	Expression for output voltages – Single-phase Semi-Converter with R load - RL	

	load and RLE load - Continuous and Discontinuous conduction - Harmonic	
	Analysis - Numerical Problems.	
UNIT - 3	Three-phase AC-DC Converters & AC – AC Converters	
	Three-phase half wave Rectifier with R and RL load - Three-phase fully	
	controlled rectifier with R and RL load - Three-phase semi converter with R and	
	RL load - Expression for Output Voltage - Harmonic Analysis - Numerical	
	Problems.	
	AC-AC power control by phase control with R and RL loads - Expression for rms	
	output voltage-Numerical problems.	
UNIT - 4	DC–DC Converters	
	Analysis of Buck - Boost and Buck-Boost converters in Continuous Conduction	
	Mode (CCM) and Discontinuous Conduction Modes (DCM) - Output voltage	
	equations using volt-sec balance in CCM & DCM – Expressions for output	
	voltage ripple and inductor current ripple- Numerical Problems.	
UNIT - 5	DC–AC Converters	
	Introduction - Single-phase half bridge and full bridge inverters with R and RL	
	loads – Three-phase square wave inverters - 120° conduction and 180°	
	conduction modes of operation - PWM inverters - Sinusoidal Pulse Width	
	Modulation - Numerical Problems.	
	Total	

Text Books:

- 1. Power Electronics: Converters Applications and Design by Ned Mohan Tore M Undeland William P Robbins John Wiley & Sons.
- 2. Power Electronics: Circuits Devices and Applications by M. H. Rashid Prentice Hall of India 2nd edition 1998
- 3. Power Electronics: Essentials & Applications by L.Umanand Wiley Pvt. Limited India 2009.

- 1. Elements of Power Electronics-Philip T.Krein. Oxford University Press; Second edition
- 2. Power Electronics by P.S.Bhimbra Khanna Publishers.
- 3. Thyristorised Power Controllers by G. K. Dubey S. R. Doradla A. Joshi and R. M. K.Sinha New Age International (P) Limited Publishers 1996.
- 4. Power Electronics: by Daniel W.Hart Mc Graw Hill.

IV B.Tech I Semester

COURSE	BASICS OF POWER SYSTEMS AND	CATEGORY	L-T-P	CREDITS
CODE –	POWER QUALITY		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basic Electrical Engineering.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Know main conventional and renewable power generation schemes.	
CO2	Analyse the effect of harmonic distortion on electric equipment.	
CO3	Provide solutions for power factor improvement	
CO4	Learn the need of good quality power.	
CO5	Design custom power devices for power quality improvement.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	1	2	1	1	1	2	2	1	2	2
CO2	1	1	2	1	1	2	1	1	1	1	2	2	2	2	1
CO3	1	2	2	2	1	2	1	1	2	1	3	2	1	2	1
CO4	1	2	2	2	2	2	1	1	2	1	2	2	1	2	1
CO5	1	1	2	2	1	2	1	1	1	1	1	1	1	2	1

UNIT	CONTENTS	Contact Hours
UNIT - 1	Basic Power Systems	
	Conventional Power generation-Hydel and thermal (block diagram only)-	
	Renewable power generation-solar and wind (block diagrams only) -	
	advantages and limitations of renewable power generation-Basic concepts of	
	transmission and distribution.	
UNIT - 2	Harmonics	
	Linear and nonlinear loads-examples - harmonics - total harmonic distortion	
	(THD)-sources of harmonics-Effect of Harmonic distortion- impact on	
	capacitors - Transformers - motors and meters.	
UNIT - 3	Power Factor	
	AC apparent power - Active Power - Reactive Power - Power factor - power	
	factor with non-linear loads - True Power factor - need for power factor	

	improvement.								
UNIT - 4	Power Quality								
	Power Quality definition-need for quality power- power quality issues-voltage								
	sag - voltage swell - low voltage - over voltage - short and long								
	interruptions - voltage fluctuations - voltage unbalance – wave form								
	distortion -Power quality issues due to renewable power generation.								
UNIT - 5	Custom Power Devices								
	Reactive power and harmonic compensation devices-static var compensator -								
	static shunt compensation; compensation devices for voltage sag and								
	momentary interruptions-source transfer switch - Hybrid source transfer								
	switch - high speed mechanical source transfer switch; back up energy supply								
	devices-battery UPS - Super conducting magnetic energy storage (SMES) -								
	flywheel.								
	Total								

Text Books:

- 1. Electrical Power Systems Quality Dugan R C McGranaghan M F Santoso S and Beaty H W Second Edition McGraw-Hill 2002.
- 2. Understanding Power Quality Problems: Voltage Sags and Interruptions Bollen M H J First Edition IEEE Press; 2000.
- 3. Guidebook on Custom Power Devices Technical Report Published by EPRI Nov 2000
- Power Quality Enhancement Using Custom Power Devices Power Electronics and Power Systems - Gerard Ledwich - Arindam Ghosh - Kluwer Academic Publishers - 2002.

- 1. Power Quality Primer Kennedy B W First Edition McGraw-Hill 2000.
- 2. Power System Harmonics Arrillaga J and Watson N R Second Edition John Wiley & Sons 2003.
- 3. Electric Power Quality control Techniques W. E. Kazibwe and M. H. Sendaula Van Nostrad Reinhold New York.
- 4. Power Quality c.shankaran CRC Press 2001
- 5. Harmonics and Power Systems Franciso C.DE LA Rosa-CRC Press (Taylor & Francis).
- 6. Power Quality in Power systems and Electrical Machines-EwaldF.fuchs Mohammad A.S. Masoum-Elsevier
- 7. Power Quality C. Shankaran CRC Press 2001
- Instantaneous Power Theory and Application to Power Conditioning H. Akagiet.al. IEEE Press - 2007.
- 9. Custom Power Devices An Introduction Arindam Ghosh and Gerard Ledwich Springer 2002
- A Review of Compensating Type Custom Power Devices for Power Quality Improvement Yash Pal et.al. - Joint International Conference on Power System Technology and IEEE Power India Conference - 2008. POWERCON 2008.

IV B.Tech I Semester

COURSE	FUNDAMENTALS OF ELECTRIC	CATEGORY	L-T-P	CREDITS
CODE –	VEHICLES		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Basics of Machines and Electronics.

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Illustrate different types of electric vehicles.	
CO2	Select suitable power converters for EV applications.	
CO3	Design HEV configuration for a specific application.	
CO4	Choose an effective method for EV and HEV applications.	
CO5	Analyse a battery management system for EV and HEV.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	0				1 0	·									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	3	3	2	-	-	-	3	-	-	-
CO2	2	3	2	1	-	1	1	2	1	-	-	-	2	3	-
CO3	-	3	3	3	2	1	-	-	2	2	3	-	-	2	-
CO4	3	2	2	3	1	2	1	-	-	2	2	-	-	3	3
CO5	2	-	2	-	2	2	-	-	-	-	-	3	2	2	2

UNIT	CONTENTS	Contact Hours
UNIT - 1	Introduction Fundamentals of vehicles - Components of conventional vehicles - drawbacks of conventional vehicles – Need for electric vehicles - History of Electric Vehicles – Types of Electric Vehicles – Advantages and applications of Electric Vehicles.	
UNIT - 2	Components of Electric Vehicles Main components of Electric Vehicles – Power Converters - Controller and Electric Traction Motor – Rectifiers used in EVs – Bidirectional DC–DC Converters – Voltage Source Inverters – PWM inverters used in EVs.	
UNIT - 3	Hybrid Electric Vehicles Evolution of Hybrid Electric Vehicles – Advantages and Applications of	

	Hybrid Electric Vehicles – Architecture of HEVs - Series and Parallel HEVs	
	- Complex HEVs - Range extended HEVs - Examples - Merits and	
	Demerits.	
UNIT - 4	Motors for Electric Vehicles	
	Characteristics of traction drive - requirements of electric machines for EVs -	
	Different motors suitable for Electric and Hybrid Vehicles – Induction Motors	
	– Synchronous Motors – Permanent Magnetic Synchronous Motors –	
	Brushless DC Motors - Switched Reluctance Motors (Construction details	
	and working only)	
UNIT - 5	Energy Sources for Electric Vehicles	
	Batteries - Types of Batteries - Lithium-ion - Nickel-metal hydride - Lead-	
	acid - Comparison of Batteries - Battery Management System - Ultra	
	capacitors – Flywheels – Fuel Cell – its working.	
	Total	

Text Books

- 1. Iqbal Hussein Electric and Hybrid Vehicles: Design Fundamentals CRC Press 2021.
- 2. Denton Tom. Electric and hybrid vehicles. Routledge 2020.

- 1. Kumar L. Ashok and S. Albert Alexander. Power Converters for Electric Vehicles. CRC Press 2020.
- 2. Chau Kwok Tong. Electric vehicle machines and drives: design analysis and application. John Wiley & Sons 2015.
- 3. Berg Helena. Batteries for electric vehicles: materials and electrochemistry. Cambridge university press 2015.

IV B.Tech I Semester

COURSE	BASICS OF ELECTRIC DRIVES AND IT'S	CATEGORY	L-T-P	CREDITS
CODE –	APPLICATIONS		4-0-0	4
R2011XXYY	(Minor Course)			

Pre-requisite: Electrical Machines - Fundamentals of Power Electronics

Course Outcomes: After the completion of the course the student should be able to:

		Knowledge
		Level (K)#
CO1	Explain the fundamentals of electric drive and different electric braking methods.	
CO2	Analyze the operation of Three-phase converter fed dc motors and four quadrant operations of dc motors using dual converters.	
CO3	Describe the converter control of dc motors in various quadrants of operation	
CO4	Know the concept of speed control of induction motor by using AC voltage controllers and voltage source inverters.	
CO5	Differentiate the stator side control and rotor side control of Three-phase induction motor - explain the speed control mechanism of synchronous motors.	

#Based on suggested Revised BTL

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1								3	2	1
CO2	3	2	3	2	1								3	2	1
CO3	3	2	2	2	2								3	2	2
CO4	3	2	2	2	1								3	2	2
CO5	3	2	2	1	1								3	2	1

UNIT	CONTENTS	Contact				
		Hours				
UNIT - 1	Fundamentals of Electric Drives					
	Electric drive and its components- Fundamental torque equation - Load torque	(10hrs)				
	components – Nature and classification of load torques – Steady state stability –					
	Load equalization– Four quadrant operation of drive (hoist control) – Braking					
	methods: Dynamic – Plugging – Regenerative methods.					
UNIT - 2	Controlled Converter Fed DC Motor Drives					
	3-phase half and fully-controlled converter fed separately and self-excited DC					
	motor drive - Output voltage and current waveforms - Speed-torque					
	expressions – Speed-torque characteristics -Numerical problems.					

UNIVERSITY COLLEGE OF ENGINEERING KAKINADA (AUTONOMOUS) :: JNTUK,KAKINADA DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT - 3	DC-DC Converters Fed DC Motor Drives	(10hrs)
	Single quadrant – Two quadrant and four quadrant DC-DC converter fed	
	separately excited and self-excited DC motors – Continuous current operation -	
	Output voltage and current waveforms - Speed-torque expressions and	
	characteristics.	
UNIT - 4	Stator and Rotor side control of 3-phase Induction motor Drive	(10hrs)
	Stator voltage control using 3-phase AC voltage regulators – Waveforms –	
	Speed torque characteristics- Variable Voltage Variable Frequency control of	
	induction motor by PWM voltage source inverter. Static rotor resistance	
	control– Static Scherbius drive – Static Kramer drive – Performance and speed	
	torque characteristics.	
UNIT - 5	Control of Synchronous Motor Drives	(8hrs)
	Separate control of synchronous motor – self-control of synchronous motor	
	employing load commutated thyristor inverter - closed loop control of	
	synchronous motor drive (qualitative treatment only).	
	Total	

Text Books:

- Fundamentals of Electric Drives by G K Dubey Narosa Publications 2nd edition 2002.
- 2. Power Semiconductor Drives by S.B.Dewan G.R.Slemon A.Straughen Wiley-India 1984.

Reference Books:

- 1. Electric Motors and Drives Fundamentals Types and Apllications by Austin Hughes and Bill Drury Newnes.4th edition 2013.
- 2. Thyristor Control of Electric drives Vedam Subramanyam Tata McGraw Hill Publications 1987.
- 3. Power Electronic Circuits Devices and applications by M.H.Rashid PHI 3rd edition 2009.
- 4. Power Electronics handbook by Muhammad H.Rashid Elsevier 2nd edition 2010.